
Topsy i386
A Teachable Operating System.
The Port to the ia32 Architecture
Semester Thesis of Lukas Ruf

April 1998 { July 1998

Computer Engineering and Networks Laboratory, ETH Zurich

Supervisor: George Fankhauser

Professor: Bernhard Plattner

Abstract

This report provides an overview of the semester project done by Lukas Ruf
during the summer semester 1998. Theme of the semester project was the �rst
port of Topsy and conjointly the proof of its portability. Topsy, short for "A
Teachable Operating System", is a small multithreaded operating system devel-
oped and used for teaching purposes at the Swiss Federal Institute of Technology
in Zurich. Topsy was principally developed by George Fankhauser. Topsy is a
layered operating system, i.e. all hardware dependencies are encapsulated. So
porting Topsy requires the development of the hardware dependent part provid-
ing the same functionality on the target system.

The ia32 architecture as found in most commonly used personal computers
was the target platform of this port from MIPS architecture. Topsy i386 is a
standalone operating system running in full 32bit protected mode. It provides a
fully compatible system interface to the source code of MIPS-Topsy v1.0.

For a better understanding of this report a basic knowledge of the ia32 archi-
tecture is helpful. This can be found in the books noted in the bibliography in
Appendix D, "The i386 Port".

This report was intentionally written on a high level of abstraction as most
of this work lays in the coding of the hardware dependent part of the operat-
ing system itself. However, a discussion of portability as notes on the applied
memory protection scheme and results can be found in this report. Most of the
documentation is written in Appendices C, "A Guide to Port Topsy", and D,
"The i386 Port", of the manual.

Additionally this report includes Appendix C, "A Guide to Port Topsy",
Appendix D, "The i386 Port" and Appendix E, "Given Problem" of the manual
for a compact reading.

This semester project has fully reached its goals: A running Topsy i386 to-
gether with a proof of portability are available.

Abstract

Dieser Bericht gibt einen Ueberblick zur Semesterarbeit von Lukas Ruf waehrend
des Sommersemesters 1998. Thema dieser Arbeit war die erste Portierung von
Topsy auf eine andere Hardware-Plattform mit einer gleichzeitigen Veri�kation
seiner Portierbarkei. Topsy, Kurzform fuer "A Teachable Operating System", ist
ein "kleines aber feines" multithreaded Betriebssystem, das an der Eidgenoes-
sischen Technischen Hochschule in Zuerich (ETHZ) hauptsaechlich von George
Fankhauser entwickelt wurde und im Praktikum zur viertsemestrigen Vorlesung
Technische Informatik II eingesetzt wird. Das Design von Topsy ist schichtenori-
entiert, d.h. die Hardware-Abhaengigkeiten sind getrennt vom restlichen Betrieb-
ssystem. Dieses Schichtenmodell ermoeglicht eine einfache Portierbarkeit. Eines
der Ziele bei der Entwicklung war die einfache Portierbarkeit von Topsy.

Um Topsy auf eine neue Hardware-Plattform zu portieren, muss lediglich
der Hardware-abhaengige Teil an die Gegebenheiten der Zielplattform angepasst
werden. Hauptbedingung ist, dass die Schnittstelle, wie sie beim originalen Topsy
vorgegeben wurde, moeglichst eingehalten wird.

Die Zielplattform bei dieser Portierung war die ia32-Architektur, wie sie heute
in den meisten eingesetzten Personal Computer verwendet wird. Urspruenglich
wurde Topsy fuer eine Praktikumsumgebung mit einer MIPS-Architektur en-
twickelt. Topsy i386 ist ein eigenstaendiges Betriebssystem, das im 32bit Pro-
tected Mode der ia32-Architektur laeuft. Die vorliegende Version als Resultat
der Semesterarbeit stellt eine zur Version 1.0 des MIPS-Topsy's voll kompatible
System-Schnittstelle zur Verfuegung.

Fuer das Verstaendnis dieser Dokumentation, d.h. dieses Berichtes und der
beiden Appendizes C und D des Topsy Benuetzer-Handbuches, wird eine Grund-
kenntnis der ia32-Architektur vorausgesetzt, die den Buechern des Literaturan-
hanges entnommen werden kann.

Dieser Bericht wurde absichtlich auf einer hohen Abstraktionsstufe geschrieben,
da der Hauptteil dieser Semesterarbeit in der realisierten Portierung des Betrieb-
ssystems, d.h. im Quellcode selbst liegt. Dennoch wird in diesem Bericht eine
Eroerterung der Portabilitaetsveri�kation als auch eine Darstellung des angewen-
deten Schutzschemas gegeben.

Die Dokumentation der vorliegenden Portierung wurde zur Hauptsache in
den beiden Appendizes C, "A Guide to Port Topsy", und D, "The i386 Port",
des Topsy Benuetzer-Handbuches geschrieben. Sie wurden fuer die Abgabe der
Semesterarbeit in diesen Bericht eingebunden.

Das Ziel dieser Semesterarbeit wurde erreicht: Das Resultat der Arbeit ist ein
lau�aehiges Topsy i386 mit einer Veri�kation der Portierbarkeit des Systems.

Contents

1 Introduction 2
1.1 Overview . 2
1.2 Acknowledgements . 3

2 Problem 4
2.1 Problem Summary . 4

3 Development Environment 5
3.1 Platform . 5
3.2 Hardware . 5

4 Results 6
4.1 Proof . 6
4.2 Di�erences . 8
4.3 Further Work . 8

4.3.1 Driver Loader . 9

C A Guide to Port Topsy 1
C.1 Formal HAL De�nition . 1

C.1.1 Input/Output . 1
C.1.2 Thread Management . 2
C.1.3 System Calls . 4
C.1.4 Memory Management . 5

C.2 Known Di�culties . 6
C.2.1 Points of Problems . 6

C.3 Creating a New Port . 9

D The i386 Port 1
D.1 Development . 1

D.1.1 Development Tools . 1
D.1.2 Topsy i386 Tools . 3
D.1.3 Keyboard . 4

D.2 Booting Topsy i386 . 8

1

Topsy i386 2

D.2.1 Master Boot Record: CoreBoot 8
D.2.2 Boot Loader: CoreLoad 8
D.2.3 Basic Initializations . 9

D.3 Topsy i386 Operation . 17
D.3.1 Exception Handling . 17
D.3.2 Low Level Exception Handling 17
D.3.3 Context Saving . 22
D.3.4 Restore Context . 22
D.3.5 Address Adjustment . 24

D.4 Remarks on ia32 Protecte Mode 27
D.4.1 Topsy i386 Implementation 27

D.5 Acronyms . 30

E Given Problem 1
E.1 Original Problem . 1

E.1.1 Einleitung . 1
E.1.2 Aufgabenstellung . 1
E.1.3 Ziele . 2
E.1.4 Vorgehen . 3
E.1.5 Bemerkungen . 3
E.1.6 Ergebnisse der Arbeit . 3
E.1.7 Literatur . 4

Chapter 1

Introduction

The 4th term students of the department of electrical engineering at Swiss Fed-
eral Institute of Technology in Zurich (ETHZ) are taught modern programming
skills like multi threading, multi tasking and simple operating system develop-
ment. Practical exercises are performed using a small, simple and multi threaded
operating system called Topsy, "A Teachable Operating System". This operating
system was developed for the Practice IDT-MIPS Board as found at the ETHZ,
connected to Sun Workstations, running Solaris. These boards are connected via
a serial line to the workstation. Topsy is downloaded to the board and booted
there. The user interface is an xterm-shell on the Sun, cooperating with the
debugger required to start the operating system.

As normally students do own neither a Sun Workstation nor are they able to
use such a MIPS Board at home. Personal computers on an Intel processor basis
are wide spread, and most of the students own one. For examination preparation
students are to learn the multi threaded programming by practice. To provide
the required platform on standard personal computer this semester project was
started.

1.1 Semester Project Overview

This semester project was intended to port the Topsy Hardware Abstraction
Layer from the MIPS architecture to the commonly used ia32 architecture, i.e.
32bit processors as nowadays found in personal computers (80386, 80486, Pen-
tium, Pentium Pro, Pentium II, and compatible). The operating system source
code to port was the �rst release of Topsy, version 1.0.

The design of Topsy is clearly layered, i.e. the functionality of the operat-
ing system is divided in a hardware dependent layer (the Hardware Abstraction
Layer: HAL), a hardware independent kernel, and user layer.

Providing Topsy on other platforms than the original MIPS board requires
porting the hardware abstraction layer to the new platforms; kernel and user

3

Topsy i386 4

i386
8259
Clock

Topsy i386 HAL

Topsy
Console
Driver

Key
board

Key
board
Driver

FS
Server

FS
(Minix,

DOS, ...)

libc, libix

Tools
(bash, make,
gas, gld, lcc,

...)

Topsy Syscall lib

Topsy Shell

Us
er

Ke
rn

el
Ha

rd
wa

re

Screen

Figure 1.1: Layered Model of Topsy

layer do not require changes. As noted above the xterm-shell running Topsy on
Sun/MIPS provides keyboard and console handling at lowest level. Topsy on
other platforms require the development of them. A console driver, i.e. keyboard
handling and screen output, was developed as part of the standalone operating
system hardware dependencies. Provided with this release is a keyboard mapping
near to the Swiss German VSM keyboard layout.

As this semester project consists of the �rst port, the proof of portability had
to be done, too (see below Section "Proof of Portability").

Topsy i386 as released with this documentation boots from a standard high
density oppy disk. No drive access in protected mode is available at this time,
so all data has to be loaded during boot up: in real mode as the BIOS interrupts
of the personal computer do their job only in real mode.

For a detailed explanation of ported functions, implementation requirements
and implementation decisions see Appendix C, "A Guide to Port Topsy", Section
"Formal HAL de�nition", and Appendix D, "The i386 Port".

1.2 Acknowledgements

Acknowledgements of this semester project go to the project supervisor George
Fankhauser for accepting and supporting this theme as for encouraging discus-
sions, too. Further acknowledgements are returned to the Computer Engineering
and Networks Laboratory at ETHZ for the enabling of this semester project itself.

Chapter 2

Problem

The original problem can be found in Appendix E. This chapter provides a short
summary of problems given in this semester project.

2.1 Problem Summary

Summarizing the given problem the following points have to be considered:

� Port of the hardware abstraction layer from MIPS to ia32 architecture

� Proof of portability of Topsy

� Development of a keyboard driver

� Development of a screen driver

� Development of a general purpose dynamical driver loading mechanism, i.e.
a load procedure for drivers not statically linked to the kernel image

� Summarizing report

� Documentation of functional system

5

Chapter 3

Development Environment

3.1 Development Platform

Development of Topsy i386 had to be done using freely available development
tools. Not to waste time with con�guring and installing the development oper-
ating system stable Linux version 2.0 was chosen. Another point of interest was
the availability of the GNU Tools as Topsy for MIPS was developed using them.

Users of Topsy i386 should have installed GNU Tools, i.e. the compiler,
linker and object copy. Any additional tools required for the creation of bootable
program images are provided together with the source code of Topsy i386.

3.2 Development Hardware

Topsy i386 was developed on a personal computer with a fast harddisk and a fast
processor. The personal computer on a ia32 platform was chosen as development
platform as on the one hand the process could be performed without using cross
development and on the other hand the personal computer (as the target system)
was available at home.

When developing or porting an operating system, continuous testing is re-
quired after reaching a certain degree of development progress. Debugging an
operating system at initial development is not possible using a professional avail-
able debugger { this would require a compatible and stable running operating
system. Only tests "by hand" i.e. following formerly speci�ed statements, dis-
playing register and stack contents are available.

To provide a fast test equipment a personal computer with only minimal
equipment was installed: a oppy disk drive, a VGA (Video Graphic Adapter)
controller, a modern processor and a minimal size of RAM were built in the test
workstation.

6

Chapter 4

Results

Referring to chapter 2 all goals except the driver loading were fully reached, .
Currently the drivers are still statically linked to the kernel image. The user
block is split o� from the kernel block, providing an own C-Startup function. No
protected mode disk interface is provided yet, i.e. the disks can only be accessed
using the BIOS functionality provided by a personal computer (BIOS operates
only in real mode). So the complete code must be loaded to RAM during startup,
i.e before the switch to protected mode. Further on, the use of BIOS restricts the
size of executable code as in real mode standard personal computer provide only
640KB of RAM. For a detailed discussion on starting Topsy i386, please refer to
Appendix D, "The i386 Port".

A general purpose driver loader would exceed the scope of time available for
a one man semester project. The driver handling mechanism would have had to
be completely redesigned; this could be part of another semester project. Never-
theless a short discussion on design alternatives for a driver loading mechanism
can be found in the last section of this report, Driver Loader 4.3.1 on page 9.

4.1 Proof of Portability

Proo�ng an operating system on portability aspects means detecting functional
de�nitions that are not portable. Inportabilities must be located in the kernel
layer since only the hardware abstraction layer depends on the architecture used.

Topsy as a well designed layered operating system was found really portable.
Only some implementation details made Topsy v1.0 inportable. With little e�ort
they were �xed:

� Threads/TMIPC.c/msgDispatcher()
an argument branchDelayBit was speci�ed. On other platforms, like the
ia32, this bit may not exist { and so, can not be handled correctly. The
branchDelayBit ag makes the msgDispatcher() kill the actual thread if
it equals to a MIPS dependent state of a so called "Branch Delay slot".

7

Topsy i386 8

Functionality of the Topsy kernel can not be provided on other hardware
architectures than MIPS if this ag remains in the kernel layer.

� Threads/TMThread.c/threadBuild()
was developed in face of the MIPS architecture and handled only the MIPS
dependencies correctly. Other architectures like the ia32 may require ad-
ditional settings (e.g. segment selectors in ia32) for building an executable
thread. This problem could only be solved implementing a function to
set the required hardware dependencies for thread execution (so called
TMHAl.c/tmSetMachineDependencies()). It might be possible that other
ports require an additional setting of hardware dependencies before con-
structing the thread context; the currently provided function is located
after the original thread construction.
Further on the use of tmSetReturnAddress() was not portable: the ad-
dress should not be written as a literal but with a de�ned constant. Some
other architectures may need another stack layout than the MIPS board.

� IO/IODevice.c/ioCheckBu�erAddress()
caused some real trouble when preparing the demonstration of Topsy i386
at ETHZ. In the ia32 world protection is applied by de�ning di�erent seg-
ments which all start at o�set zero (refer to Appendix D, section "Basic
Initializations").
Implementing a memory manager that supports memory mapping by us-
ing the MMU (Memory Management Unit) capabilities of the i386 would
require a function that veri�es the bu�er addresses.

Actually Topsy i386 does not support virtually mapped memory manage-
ment: programming the memory management unit of an ia32 architecture
to support virtually mapped memory management would require an e�ort
not possible for this semester project.
The ioCheckBu�erAddress() is not required for Topsy i386 as every mes-
sage passing from user to kernel space requires an address translation (see
Appendix D, "The i386 Port", section "Basic Initializations")

In general the IO Handling is at kernel level and needs a new structure as it is
not possible to provide the equal functionality on every platform, e.g. the FPGA
driver. Another problem occurred when implementing the drivers itself: In MIPS-
Topsy they are hardcoded into IO/IOMain.c. It could be possible to name some
standard interface drivers, for example serial, console, keyboard, disk, parallel,
network, etc. If a new dynamical driver loading mechanism is implemented, the
driver structure must be redesigned.

Topsy i386 9

4.2 Di�erences

The implementation of Topsy on the PC could be made without really hard
di�erences to the MIPS-Topsy, except for the second timer interrupt and the
drivers. The kernel itself does not make use of the second timer channel but
provides an initializing of it.

In a PC a timer controller compatible to the Intel 8253 is included as found
in the MIPS-board too. Problems raised when trying to provide a second inde-
pendent timer interrupt to the kernel: the PC makes a hardwired use of all three
timer channels:

1. Channel 0 is available for system programmers

2. Channel 1 is used for memory refreshments

3. Channel 2 is hardwired to the PC speaker for generating sounds

The drivers provided by MIPS-Topsy could be adapted in sense of equal func-
tionality. In Topsy i386 only a TTY driver is implemented for handling console
input and output, i.e. keyboard handling and graphic adapter controlling in text
mode.

4.3 Further Work

Topsy i386 v1.0 is a running standalone operating system providing full func-
tionality compatible to the MIPS-Topsy v1.0. Extending Topsy i386 is always
possible, e.g.

� Memory Management
Removing the statically de�ned maximal available memory size for user
programs and implementing the e�ective available physical RAM size could
provide space for more user and/or kernel processes. At initial booting of
Topsy i386, the required information is collected, refer to Appendix D,
section "Basic Initializations".

� Driver Loader
Loading of drivers provided in a separate module not necessarily statically
linked to the kernel at build time. For an initial idea see section 4.3.1.

� Virtual File System
Managing a �le system not dependent of the physical medium: providing a
RAM disk (no disk access required), accessing a physical disk, see next.

� Disk Access
Accessing a disk at kernel run timewithout the need of real mode operation,
i.e. a driver running at kernel level with direct disk access.

Topsy i386 10

� Network
A driver providing direct network card access on basis of Ethernet or Token
Ring could on the one hand show the IP-Stack real world functionality
implemented by the semester project of David Schweikert and on the other
hand connect Topsy to the outer world.

4.3.1 Driver Loader

This section describes one possible driver loader mechanism.
The dynamic driver loader could be implemented managing the drivers as

separate programs like the kernel or user. Every driver runs within his own
driver space. The required commands are exchanged via the message passing
scheme as used for kernel-user message passing. No extensions regarding program
relocation must be made for loading separate drivers as would have to be done
if the drivers where moved into the kernel space. The disadvantage with this
option can be found as every driver must implement a simple message handler.
Further the driver manager linked to the kernel must implement an own memory
management system.

A Guide to Port Topsy
Semester Thesis of Lukas Ruf

April 1998 { July 1998
Computer Engineering and Networks Laboratory, ETH Zurich
Supervisor: George Fankhauser
Professor: Bernhard Plattner

Abstract

Appendix C, "A Guide to Port Topsy", provides an abstract overview of the
requirements for doing a port of Topsy to another platform. With respect to
the i386 port done by Lukas Ruf, every HAL Interface function is listed and
shortly commented. A short note how the function is implemented in Topsy i386
completes the formal HAL de�nition.

A section with di�culties found while the i386 port was programmed should
cover possible problems when a new port is started.

Providing hints for a new port strongly depends on the target architecture so
only a short description on how the i386 port was done could be implemented
there.

Appendix C

A Guide to Port Topsy

C.1 Formal HAL De�nition

This chapter provides a summarizing overview of the formal HAL de�nitions.
The interface is speci�ed by noting the function headers. The list of all functions
also contains a short description of the appropriate functionality as a short note
on implementation applied in Topsy i386 are given. As helpful the notes are
listed by catchwords. Detailed implementation information for Topsy i386 can
be found in Appendix D, "The i386 Port".

C.1.1 Input/Output

The HAL interface is only used for kernel purposes. Input and output of the user
programs are handled by the console driver.

1. void ioConsoleInit();
Initialization of the console. If output is generated via a communication
line, this function is used. In Topsy i386 there is no use of it as an attached
graphic adapter is assumed.

2. void ioConsolePutChar(char);
Output of a single character. Needs being implemented for low level de-
bug output. Topsy i386 translates this to a function call to kprintc()
(IO/ia32/Video.c).

3. Input, Output for User Programs:
Character input and output are handled on a driver basis, i.e. the drivers
have to be implemented. In Topsy i386 the driver TTY (IO/ia32/Drivers/TTY.c)
handles simultaneously character input and output as needed by ioRead()
and ioWrite() (both located in Topsy/syscall.c).

1

Topsy i386 2

C.1.2 Thread Management

Most of those functions are only called at thread generation or system initializa-
tion.

1. Error setClockValue(ClockId , int , ClockMode);
Handles initialization of the clock chip. For preemptive multi threading
needs being implemented. Topsy i386 provides only one single timer channel
as both others are hardwired to memory refreshment cycles and speaker
frequency generating.

2. void tmResetClockInterrupt(ClockId);
Resets the raised clock interrupt. In Topsy i386 this function is not used, i.e.
the function body remained empty as this functionality is handled by the
Interrupt Handler itself as all raised interrupts need an acknowledgement,
otherwise the interrupt controller stops recognizing new interrupts on a less
privileged level.

3. void tmInstallErrorHandlers(void);
Installs the default error handlers as the default system call gates too. The
default error handlers in fact do only provide an error message and then kill
the faulting thread. Topsy i386 provided a slight di�erent default handling,
see section D.3.2.

4. void saveContext(ProcContextPtr);
Stores the current processor context in the provided address space. This
function call is implied by the general exception handler in MIPS-Topsy at
assembler level. Topsy i386 does not make use of it. It saves the status to
the stack at transition from assembler to C.

5. void restoreContext(ProcContextPtr);
Restores a new processor context. So, a thread and a process switch are
implied by calling this function with a newly scheduled processor context.
Topsy i386 must take care of protection level switching as the ia32 archi-
tecture includes a multiprocessing and not a multi threading support. A
really elegant solution can be found in Threads/ia32/TMHalAsm.S.

6. void tmSetReturnValue(ProcContextPtr , Register);
Sets the thread return value. When a kernel or driver function is called by a
tmMsgSend, the return value to the calling thread must be noted somewhere
in the calling thread's context. Topsy i386 must store the return value in
the thread's stack environment, a function returns the value in a general
purpose register (pair) on the ia32 architecture which are restored by a
restoreContext() function call.

Topsy i386 3

7. void tmSetStackPointer(ProcContextPtr , Register);
Adjusts the stack pointer of a newly created thread. Topsy i386 must set a
location in the thread's stack.

8. void tmSetReturnAddress(ProcContextPtr , Register);
Sets the return address of a thread. When a user thread exits without
calling tmExit() the address formerly set by this function is used to call the
exit function. Topsy sets this value in the thread's stack.

9. void tmSetProgramCounter(ProcContextPtr , Register);
Sets the initial program counter for a thread start. Topsy i386 sets this
value in the thread's stack.

10. void tmSetStatusRegister(ProcContextPtr , Register);
Handles modi�cations of the processor status ags, e.g. interrupt en-
abling/disabling on thread start/return. Topsy i386 sets this value in the
thread's stack.

11. void tmSetFramePointer(ProcContextPtr , Register);
Sets the initial frame pointer of a thread. Normally this value is initialized
to zero. Topsy i386 sets this value in the thread's stack.

12. void tmSetArgument0(ProcContextPtr , Register);
Provides the argument 0 { the �rst argument { to the started thread. Topsy
i386 sets this value in the thread's stack.

13. void tmSetArgument1(ProcContextPtr , Register);
Analogous to tmSetArgument0().

14. void enableInterruptInContext(InterruptId, ProcContextPtr);
Enables speci�ed interrupt lines. Not actually used for controlling single
interrupt enabling. Topsy i386 can not enable a single interrupt line per
thread context; the interrupt controller acts globally. Topsy i386 only en-
ables or disables all interrupts by setting a processor ag in the thread's
context. For proper preemptive operation this ag has to be set always
when starting a thread.

15. void disableInterruptInContext(InterruptId,ProcContextPtr);
Analogous to enableInterruptInContext().

16. void enableAllInterruptsInContext(ProcContextPtr);
The functionality of enableAllInterruptsInContect() is restricted to the one
noted in enableInterruptInContext(), see above.

17. void tmInstallExceptionCode();
Initializes the default exception handling functionality. Topsy i386 installs

Topsy i386 4

the clock interrupt handler per default in this function. The timer handler
at HAL level was found to be a general purpose exception handler more
than an error handler.

18. void syscallExceptionHandler(ThreadId);
Default syscall exception handler. Topsy i386 implemented a generalized
exception/interrupt handler.

19. void hwExceptionHandler();
Analogous to syscallExceptionHandler() for hardware interrupt handling.

20. void automaticThreadExit();
Address of the automatic thread exit code. This code is copied on to the
thread's stack for returning properly when a thread �nished operation.

21. void endAutomaticThreadExit();
This function header is only a label, i.e. an address, and notes only the end
of the formerly listed function to the C code. In assembler it is coded as a
label.

22. void UTLBMissHandler();
User translation lookaside bu�er error handler. Called when the processor
detects an invalid page ag. Not used in Topsy i386 v1.0 as only direct
mapped memory handling is supported.

23. void endUTLBMissHandler();
This function header is only a label, i.e. an address, and notes only the end
of the formerly listed function to the C code. In assembler it is coded as a
label.

24. void generalExceptionHandler();
Assembler level general exception handler. Called for a generalized excep-
tion handling. Topsy i386 implemented this function on C level.

25. void endGeneralExceptionHandler();
This function header is only a label, i.e. an address, and notes only the end
of the formerly listed function to the C code. In assembler it is coded as a
label.

C.1.3 System Calls

1. SyscallError tmMsgSend(ThreadId , Message *);
Assembler level message sending routine. This is part one of the main
functionality, i.e. the message passing. In Topsy i386 this function is im-
plemented with passing the values by registers as done in MIPS-Topsy.

Topsy i386 5

2. SyscallError tmMsgRecv(ThreadId* , MessageId , Message* ,
int);
Part two of the main functionality. Analogous to tmMsgSend().

C.1.4 Memory Management

1. void mmInstallErrorHandlers(void);
Installation of the memorymanagement fault exception handlers. Not used
in Topsy i386 as fault exception handling is part of the generalized excep-
tion/interrupt handler, see note on error handling below.

2. Error mmInitMemoryMapping(Address codeAddr, unsigned long
int , Address , unsigned long int , Address);
Initialization of the memorymapping functionality. If virtual memorymap-
ping was used, this function should install the translation bu�ers. In Topsy
i386 this function only copies the user program into the user space.

3. Error mmMapPages(Page , Page , PageStatus);
Would map a page. Not used in Topsy i386.

4. Error mmUnmapPages(Page , Page);
Would unmap a page. Not used in Topsy i386.

5. Error mmMovePage(Page , Page);
Movement of a page. Topsy i386 v1.0 does only copy a page; it is a direct
memory mapping system.

6. Error mmProtectPage(Page , ProtectionMode);
A protection ag could be set to a single page. Not used in Topsy i386 as
this would require the virtual memory mapping management implemented.

7. Error mmAddressSpaceRange(AddressSpace , Address* , unsigned
long int*);
Returns the starting address of a requested address space (USER or KER-
NEL) as the managed size of this range. Topsy i386 provides a compatible
functionality.

8. void setTLBEntry(Register , Register , Register);
Would set a translation lookaside bu�er entry if this function would be
required by the processor. The ia32 architecture handles the TLB manage-
ment directly in its MMU. So not used in Topsy i386.

Topsy i386 6

C.2 Known Di�culties

When the Topsy i386 port was started a deeper understanding of the original
Topsy implementation had to be worked out �rst as porting a HAL in a formal
way is not su�cient: the operating system must be fully understood. The MIPS
Topsy includes a lot of message passing functionality in assembler, so, even the
MIPS assembler notation must be known.

C.2.1 Points of Problems

A list of found problems while porting Topsy to the ia32 architecture is provided
in a catchword style where applicable and helpful. This list is only in respect
to the i386 port done { it does neither resemble to be complete for other ports
nor for Topsy i386. For detailed information on implementation specialties the
source code provides the ultimate instance.

� tmMsgSend()/tmMsgRecv()
The receiver and sender thread IDs are temporarily exchanged. This is
reasonable in respect to the automatic thread exit functionality. It was
time consuming to detect this problem, most as even the arguments to
the assembler functions are noted as expected { but completely di�erent
implemented in calls from assembler to C. The exchanging is documented
in assembler but no explanation why this has to be done was found.

� Sequence of Started Threads While Booting
The sequence of thread start is very important as the thread IDs are cre-
ated at runtime for all threads, including the kernel threads. When Topsy
i386 was debugged with the clock interrupt enabled, i.e. preemptive, a
short delay was to be implemented after every statement printing on screen
(else no information could be retrieved as the processing was to fast). The
scheduler then was called several times during this time. Always a general
protection fault occurred as an invalid thread was picked. Topsy includes
the note

/* the idle thread(s) guarantee that we always find a

ready thread */

in TMScheduler.c. So a longer period of error seeking was done (Topsy i386
was doubted) until it was noted that the idle thread was not yet started.
The sequence of thread creation was changed { afterwards no screen output
from user programs could be handled, the thread IDs are de�ned constants
in Topsy/Topsy.h:

Topsy i386 7

#define MMTHREADID -1 /* Memory Manager Thread Id. */

#define TMTHREADID -2 /* Thread Manager Thread Id. */

#define IOTHREADID -3 /* IO Manager Thread Id. */

Note that the kernel thread creation sequence is really important.

� Memory Management on Kernel-User-Transition
Depending on the low level memorymanagement applied in a port the mes-
sages must be adjusted internally with the right o�set as done in Topsy i386
to provide the kernel with the correct local bu�er addresses. Messages could
be marshaled for easier transition of protection level. Implementing Topsy
on a not memory shared multiprocessor environment would require this.
For sake of velocity this was not done, so a correct solution must be found
when porting Topsy to a new platform. Implementing a virtually mapped
memory management in Topsy (note: this must be explicitly programmed
for the memory management unit on the target system) could easily solve
this problem, but would require more time available.

The function ioCheckBu�erAddress() in IO/IODevice.c must be correctly
adjusted to the requirements of the new port's memory management.

� Starting Topsy
Some architectures as for example the ia32 require a more deep initialization
during startup before calling the �rst Topsy kernel function. For example
Topsy i386 requires the de�nition and creation of several control structures
for protected mode operation. So a function to provide these initializations
must be implemented, refer to Appendix D for a detailed explanation on
booting Topsy i386.

� Segmentation Map
Topsy handles the memory layout at load time by a segmenation map.
This map is built in MIPS-Topsy by an external tool, the BootLinker. It is
statically built into the binary image.
Topsy i386 builds this segmentation map during system start using the
information retrieved from the binary image �le header. For a detailed
explanation, please refer to Appendix D, Section "Basic Initializations".

� Processor State Save And Restore
Saving the processor state { when a kernel to user mode transition or vice
versa is performed { is essential to a multithreaded operating system. De-
pending on the target hardware platform the save and restore procedures
are provided or supported by the processor manufacturer. If not supported,
this functionality must be well designed as the complete operation of Topsy
depends on it.
Topsy i386 solved this problem in a elegant way: only a small piece of code

Topsy i386 8

is implemented in assembler, the remaining functionality is coded in C, refer
to Appendix D.

� Automatic Thread Exit
Exiting a thread without explicitly calling tmExit() requires the setup of
a small help function called automaticThreadExit(). It is copied onto the
thread's stack. This function performs the sending of a TMKILL message
to the thread handler tmMain(). To execute automatically the thread exit
it is important to de�ne a correct return address that makes the thread
jumping to this function when the program execution reaches the closing
bracelet without a tmExit() function call. Problems occurred when setting
the correct return address. The thread is completely built in the kernel
memory region and �nally copied into the user space. The return address
must be correctly adjusted.

� Driver Handling
A driver is opened by calling ioOpen(), closed by calling ioClose(). These
functions both are located in Topsy/Syscall.c and perform a transition to
IOMain (in IO/IOMain.c). ioOpen() returns the threadid of the started
device. When calling the ioRead() or ioWrite() functions, control is passed
to IODeviceMain() (in IO/IODevice.c).

Topsy i386 9

C.3 Creating a New Port

When a new port of Topsy must be made, refer to the preceding chapter C.1 and
chapter C.2 as to Appendix D, "The i386 Port", too.

The target platform may di�er in several aspects, for example on the MIPS
board used for the original Topsy a memory mapped IO architecture had to
be respected while the personal computer of the Topsy i386 port is a mixed
architecture, e.g. the text mode screen output can be generated by accessing a
memory mapped region while programming the peripheral support chips as the
timer or the interrupt controller requires direct access by IO ports.

Further the initialization of support chips can be completely di�erent from one
architecture to another, e.g. the programmable interrupt controller i8259 found in
personal computers requires an initialization sequence that is not directly obvious.

Acknowledging peripheral signals is also hardware dependent, e.g. the inter-
rupt controller used in personal computers continues recognization of peripheral
interrupts only after the actual and all interrupts with a higher priority are ac-
knowledged while MIPS Topsy needs acknowledgement to break repetitions, see
section C.1.2 tmResetClockInterrupt() and in source code Threads/mips/TMClock.c
for further details.

Facing problems like those requires detailed information on support chips as
processors too. It can be hard to �nd them; Intel provides a complete reference
set on the web since spring 1998: http://www.intel.com/

The i386 Port
Semester Thesis of Lukas Ruf

April 1998 { July 1998
Computer Engineering and Networks Laboratory, ETH Zurich
Supervisor: George Fankhauser
Professor: Bernhard Plattner

Abstract

This part of the i386 documentation provides a detailed explanation of the re-
leased port Topsy i386.

Starting with the development environment, this includes all tools used and
developed for Topsy i386, a short introduction to "low level" programming is
provided.

Passing over to the start of Topsy i386 a detailed explanation of the boot
process is given. The initialization of the low level control structures used to
make the ia32 architecture run in protected mode is explained including a short
notice on the support provided by the ia32 architecture itself.

The Topsy i386 specialties are reviewed in the chapter "Topsy i386 Opera-
tion". Solutions found and design decisions taken are listed in this section.

A bibliography of books used for the development of Topsy i386 ends the
documentation.

Appendix D

The i386 Port

D.1 Development

This chapter provides a detailed explanation of used and developed tools for the
Topsy i386 semester project. The tools developed are all available together with
the released Topsy i386 source code.

This subsection does not explain the hardware structure of the personal com-
puter on a ia32 architecture basis more than needed. For further information
please refer to the appropriate books listed in the bibliography.

D.1.1 Development Tools

The development was done using the GNU tools as provided with Linux stable
version 2.0. Programming the HAL and the Topsy i386 Tools the following GNU
development tools were used:

� gcc version 2.7.2.1

� ld version 2.8.1 (with BFD 2.8.1)

� objcopy 2.8.1

� objdump 2.8.1

� Make version 3.76.1

� size 2.8.1

Make managed the whole build run by calling the compiler for every �le. On
successful completion the linker concatenated and relocated the created object
�les into an "executable" ELF from which the binary image was drawn by the
object copy program. Most on initial development the disassembled listings were
of great help; the disassembling was done using objdump out of the created binary

1

Topsy i386 2

image. The appropriate segment sizes were retrieved by the program size out of
the ELF.

Compiler

Gcc was used for compiling C and assembler �les. The options for compiling C
�les were the followings: -fno-builtin -m386 -fno-strength-reduce -fomit-frame-
pointer -malign-double -malign-loops=2 -malign-jumps=2 -malign-functions=2

The alignment settings are provided to extend the speed of execution (the
ia32 increases processing speed if the referred memory addresses are a multiple of
2, i.e. lay on an even boundary) as for reducing the size of the executable. Size
reducing is also done by the "omit-frame-pointer" option. Omitting the frame
pointer provides an image that cannot be easily debugged. The target platform is
speci�ed by the "386" statement. "no-builtin" makes gcc use only not provided
functionality for program creation.

The GNU assembler, gas, makes use of gcc if the su�x of the �le is a capital
"S", e.g. TMHalAsm.S which includes the lowlevel routines for restoreContext
and saveContext.

Linker

The linker was invoked with a slightly modi�ed linker script: on the one hand
the starting address was modi�ed to relocate the single blocks to o�set zero of
the applicable segment and on the other hand the kernel and user are completely
separated. Further the .data segment is concatenated into the .rodata segment
together with the origin .rodata. Only two segments are created as Topsy inter-
nally also distinguish only two di�erent segment types: data and text.

The segment start address can be speci�ed providing the o�set right after the
starting segment, e.g. ".text 0x00000000".

Binary Image

objcopy created the binary image �le to be executed by the loader directly with-
out address relocation. This was done using the following options: -R .note -R
.comment -O binary

The "-R" statements remove the not used segments (reduces size). By de�ning
the "-O binary" ag the target �le format is speci�ed.

Disassembling

On initial development of Topsy i386 disassembled binary image �les were of
great help. Understanding the compiler and linker output is quite essential. A
human readable formatted �le with address information was created using obj-
dump with the following arguments: -b binary -D -s -EL -m i386

Topsy i386 3

"-b binary" speci�es the input �le format. The binary image �le was disassem-
bled. "-D" makes objdump disassemble all. "-s" makes objdump providing the
full content of the input. "-EL" speci�es the input �le of format little endian, by
the way, the standard format of a personal computer with a ia32 architecture.
"-m i386" speci�es the machine from where the input �le comes.

Segment Size

Using the GNU tool "size" the appropriate space occupied by one of the two
included segments could be determined in a easy way. The program size is called
with argument "-A" to make size resemble output from System V size:

kernel.elf :

subsection size addr

.text 31008 0

.rodata 10552 32768

.bss 844 43320

.note 900 44164

.comment 900 45064

Total 44204

This information is gathered into a �le to provide the required information to
the kernel patch program (see below).

D.1.2 Topsy i386 Tools

KernPatch

KernPatch is another important tool for generating a loadable and bootable ker-
nel and user image �le. It inserts information of load size (in tracks of a 1. 44MB
oppy disk, i.e. rounded multiple of 18*512B = 9216 Bytes) and code as data
segment sizes into the binary image �le header. The load size is used to read the
image from oppy disk during boot of Topsy i386. Code and data segment sizes
are used to initialize the Segmentation Map of Topsy (refer to the MIPS-Topsy
Documentation therefore).

Binary Image File Header

The Binary Image File Header is located at the very beginning of an image �le,
i. e. either kernel or user image make use of the same functionality. The �rst ten
bytes of this header must be

"TOPSYi386"\0

to mark this �le as a Topsy i386 image. At location 0x10 the load size is inserted,
0x14 contains the code and 0x18 the data segment size. Every size note consists

Topsy i386 4

typedef struct BinaryFileDesc_t {

char marker[10]; /* "TOPSYi386"'\0' */

char filler1[6]; /* Unused space to reach 4Byte alignment */

long tracksize; /* Number of Tracks to read from disk */

long codesize; /* Size of Code Segment in file */

long datasize; /* Size of Data Segment in file */

char filler2[36];/* Undefined in BinaryFileDesc */

} BinaryFileDesc;

typedef BinaryFileDesc *BinFileDescPtr;

Figure D.1: Binary Image File Header

of four Bytes. So, at location 0x1C additional information could be located.
Execution of binary image starts at 0x40. 64 bytes of header information were
thought to be far enough for future extensions.

It is important to note that the information of code segment size implies also
the starting address of the data segment size in the image �le: the data start
equals to the code size rounded up to 4KB page boundary. This information is
used while dynamically generating the segmentation map, see below.

Information required to patch the kernel is retrieved by parsing the output
�le of the size command (output redirected into a �le *.size, e.g. kernel.elf.size).

The Binary Image File Header can be found in Startup/ia32/BinaryFile.h.

D.1.3 Keyboard

Keyboard is in fact another Topsy i386 Tool. It is separetely noted as the un-
derstanding of Keyboard is important for de�ning new keyboard layouts as the
processing of keystrokes too. This section explains the keyboard handling of
Topsy i386 while regarding to the tool Keyboard.

Topsy i386 is a standalone operating system. No other tools for running or
booting Topsy i386 are required. So the low level keyboard handling must be
implemented. Supported in this version are all MFII Keyboards (101 keys), tests
with older ones could not be performed in lack of such a thing.

Note: In this subsection a port is short for an IO port.
When IBM designed the Personal Computer Keyboard mapping scheme they

appeared to encode the key stroke signaling not straitforward. A di�cult scheme
of keystroke signal encoding was provided with key codes, extended key codes
and second extended key codes. The keyboard controller provides these informa-
tion on press and release time of keystrokes via a port in IBM's port landscape:
Ports 0x60 and 0x64. The port 0x60 is used for input (R:Reading) and output
(W:Writing) of bytes to the controller, 0x64 handles the keyboard control regis-

Topsy i386 5

Figure D.2: 10bit Topsy Keycode

ter, readable and writable. Whenever the keyboard controller wishes attention
an interrupt 1 is signalled. Depending on whether a key is pressed or released
bit 7 of the received key code is unset or set, thus providing 128 easy to distin-
guish key codes in one-byte. This range would be su�cient for all key codes now
available (incl. the "MS-keys"). But IBM decided to provide a coding scheme
not directly obvious to everybody. Depending on the kind of key code (normal,
extended, 2nd extended) one, two or even three bytes are generated and sent to
port 0x60. This could be easily handled if the same key would not generate di�er-
ent key codes depending on the additional keys pressed. Further, some key codes
change depending on �rst and single or repetitive key code generation. Solving
this problem required a lot of time as no really character key code mapping was
found that provided accurate information on all keystrokes; the single key code
to character mapping was done by hand.

Another point of interest is the fact, that pressing several keys simultaneously
generates always only the last key code except the last key pressed is a key
modi�er (alt, ctrl, shift).

Further, where needed, a raw key code translation is performed mapping the
not uniquely de�ned keystroke to a uniquely de�ned one. This unique key code
points into the �rst table of keystroke translation, the so called Hardware Key
Translation Table. At the pointed location a so called logical hardware key code is
noted. This is retrieved and combined with the key modi�ers pressed. Depending
on the key modi�ers pressed the leading three bits are set or unset. This leads
to a 10bit Topsy Keycode, see �gure D.2.

This Topsy Keycode provides eight ranges depending of which key modi�ers
are pressed simultaneously together with the "normal" keys. Normal keys are all
others than the key modi�ers. The key modi�ers pressed solely do not generate
a keycode to be further processed.

The Topsy Keycode (D.2) points into a table of 1024 di�erent one-byte ASCII
characters, i.e. the keyboard layout. The "normal" range (no modi�er pressed) of
the Topsy Keycode is as close as possible to the ASCII character code to provide
an easy way to create di�erent keyboard layouts.

Topsy i386 6

Special Keycode Processing

Three exceptions were made in keycode processing:

1. ALT-CTRL-DELETE
Pressing this combination immediately reboots the system. This is handled
internally in the keyboard handler. Rebooting the system in version 1.0
switches back to real mode an performs a computer restart by jumping
to a prede�ned location in the ROM area. This can be extended in later
versions, for example by sending terminatemessages to the running threads.

2. Special Code 0x00
If at the location pointed into the 2nd Key Translation Table the value of
0x00 is found, processing is aborted, i. e. inserting character 0x00 into the
keyboard bu�er is impossible.

3. Special Code 0xFF
If at the location pointed into the 2nd Key Translation Table the value
of 0xFF is found it was intended to send a special message to the pro-
cess/thread the focus is actually set. Actually the processing of 0xFF ends
as with 0x00 (lack of time).

Take a closer look to the key translation tables as provided with this docu-
mentation, resp. the source code of Topsy i386 for a deeper understanding.

Generating the Key Translation Tables

Provided with the source of Topsy i386 is a small tool called Keyboard that
generates a table (an assembler array of byte) out of the as argument to this tool
speci�ed ASCII text �le. As noted above, a key message sending was intended to
implement. So, a second table will be generated if not inhibited by an additional
argument to the table creator. This second table is included into the build process
of a Topsy i386 kernel image. The generated key translation tables have to be
copied into the directory IO/ia32 by hand or specifying "install" as argument to
make. Take a look at the included Make�le in directory ../Tools/Keyboard.

Initial Keyboard Layout

Provided with Topsy i386 is { for a �rst release { a close mapping to Swiss German
VSM keyboards. This keyboard layout is de�ned in ../Tools/Keyboard/KeybSG.TBL.

New Keyboard Layouts

A new keyboard layout can be generated by modifying KeybSG.TBL. Modify it
according to the rules noted in Keyboard.dok. The hardware translation table

Topsy i386 7

(../Tools/Keyboard/MakeKey.TBL) should not be altered. If modi�ed, the map-
pings in a keyboard layout table must be adjusted accordingly.

Keyboard Control when Topsy i386 is Running

The complete key code handling is managed in IO/ia32/Keyboard.c. Interrupt
0x01 is handled by KeyboardISR() in this source. This handler �rst calls the
function KeyModi�er with the raw key code as argument. The modi�er-handler
does the real hard work, handling the di�erent kind of keystrokes, deciding
whether the keystroke has to be processed further on or not (when a "normal" key
is released, no code is generated to be inserted into the keyboard bu�er). The �rst
translation is performed in KeyMappedCode(), the second in KeyASCIICode().
Into the statically allocated keyboard bu�er the character is put by the function
KeyIntoBu�er(). An interface to the TTY driver is provided by the GetChar()
and IsKeyPressed() functions.

Topsy i386 8

D.2 Booting Topsy i386

Topsy i386 in the released version boots by default from a high density 1.44MB
oppy disk, i.e. 512 bytes per sector, 18 sectors per track, 80 tracks per side, and
two sides. The boot procedure is split o� into three stages:

1. Master Boot Record

2. Boot Loader

3. Kernel and User

The splitting of the boot procedure into three independent programs provides
an easier adaption to the requirements of loading Topsy i386 by another boot
loader like loadlin for example. A further advantage was found while developing
Topsy i386: the real mode programs could be separated completely from the
running Topsy, so nearly the same startup module could be used for kernel and
user.

D.2.1 Master Boot Record: CoreBoot

When power is turned on, the PC jumps into the ROM BIOS code to perform
the basic computer tests. The code there loads the very �rst physical sector from
a oppy or hard disk H/T/S 0/0/1 (Head/Track/Sector) into RAM at location
0x0000:0x7C00 in real mode segment-o�set noti�cation, i.e. linear 0x7C000, and
executes this small program.

BIOS completes work and passes control to this master boot record program.
The code there normally loads the operating system, so does the Topsy boot
record program called CoreBoot.

CoreBoot must set the boot stack; the boot stack is set to 0x1E000 (linear).
CoreBoot initializes the VGA controller to enable direct video access on the

�rst text page located at IO address 0xB8000 in the IO space. A short message
to show functionality is displayed and then the next stage is loaded. CoreBoot
assumes the third track to be the second stage boot loader named CoreLoad.

D.2.2 Boot Loader: CoreLoad

CoreLoad is stored on disk at location H/T/S 0/1/1, i.e. the third track on
disk. The whole track is read by CoreBoot into RAM at location 0x10000. When
CoreLoad receives control it veri�es the following points:

� Processor type: at least a i386 or compatible is required.

� Processor mode: real mode, the processor's boot mode, is required.

Topsy i386 9

If all tests were successfully passed, the kernel and user blocks are loaded from
disk.

The binary image �le header (refer to section D.1.2) is analyzed. If a valid
Topsy i386 image �le is found, it is loaded using the tracksize, i.e. the number of
tracks to be read by CoreLoad. A multiple of whole tracks is loaded as reading
track wise is supported by the called BIOS function (INT 0x13) and is much
faster than reading sector wise.

The Kernel image is read �rst from disk into RAM at location 0x20000
(=128KB). The User image is read second from disk into RAM at location
0x40000 (=256KB).

In real mode the RAM is logically divided into segments of 64KB. For oper-
ating systems only 640KB are usable in real mode. Actually the kernel block is
about 45KB in size, the user block 20KB. To provide room for initial extensions
to the user block, the image can grow to 2*(64KB - 512B). This size results from
the number of whole tracks �tting into one real mode segment, i.e. seven tracks
�t into one real mode segment.

While the images are loaded from disk they are split as obvious. CoreLoad
must not concatenate these potential four parts, this functionality is implemented
in BuildSegMap() for the user block, see Startup/ia32/init.c.

An analogous function for kernel concatenation must be implemented in
Startup/ia32/start.S when the kernel should reach the size of 65025B. Slight
extensions make the kernel image fast grow to bigger sizes, so 127KB block size
should provide some room for �rst extensions, then a protected mode �le handling
with disk interface should have been included to load the remaining parts into
RAM while Topsy i386 is already full functional in protected mode.

After both parts were successfully loaded into RAM CoreLoad prepares the
transition to protected mode.

D.2.3 Basic Initializations

Address Line 20

In real mode only 1MB is directly addressable as noted before. This is done using
20 address lines of the bus. Intel decided when the 80286 was developed in 1982
to provide an extended addressing scheme up to 16MB. When this new address
range should be addressed directly the famous A20 gate { the 21st address line
{ was enabled. By default it is disabled, compatibility to programs should be
provided. IBM decided to enable the A20 gate by programming the keyboard
controller (i8255). When in 1983 Intel developed the 80386 the address room
directly addressable was extended once more using the full bandwidth of the 32b
bus: 4GB. Intel preserved the same functionality to turn on the A20 gate.

Topsy i386 10

Programmable Interrupt Controller Initialization

In this section the word "interrupt" names an exception generated by a periph-
eral support chip by raising the corresponding interrupt request line. The word
"exception" is used when control is passed to the processor.

In 1981 the IBM PC was designed using the i8088 processor which provided
only 8 fault exceptions. IBM decided to implement 8 hardware interrupt lines
wired to the i8259 PIC (Programmable Interrupt Controller). These lines were by
default programmed to map to the exception vectors 0x08 to 0x0F. With the IBM
XT the number of hardware interrupt lines was extended to 16, a 2nd, cascaded
PIC was used. For sake of compatibility the formerly speci�cation remained,
the newly created interrupt lines were programmed to exception vectors 0x70
to 0x78. The 80386 included new fault exceptions. The processor decides were
the default exception vectors are located. So Intel reserved the 32 �rst vectors
for internal use. Faults normally halt a processor in real mode, fault exception
handling is provided only in a very rudimentary way. So in real mode the default
programming could be kept alive.

In protected mode the fault exception handling is supported by the processor
with features as for example instruction restart. It could be possible to keep the
standard mapping from hardware interrupt to exception vectors but this would
require an exception-source veri�cation for every exception occurring. To avoid
this annoying and time consuming procedure the PIC can be reprogrammed to
map the interrupt requesting lines to another vector. The 32 �rst exceptions
are reserved for internal use of the ia32 processors. So, CoreLoad re-programs
the hardware interrupt lines to be mapped to exceptions 0x20 to 0x2F. A direct
mapping was provided, so subtracting the o�set 0x20 results in the number of
the original interrupt request line.

Further when the reprogramming of the PIC was done, Topsy i386 imple-
mented a constant priority interrupt strategy, i.e. the hardware interrupt prior-
ity always remain equal and does not alter on every found interrupt. An explicit
end-of-interrupt command must be sent to the PIC to acknowledge the handled
interrupt and re-enable recognition of further interrupts at equal or lower priority.

GDT and IDT Initialization

After the support chips were initialized, i.e. the A20 gate (see section D.2.3) and
the PIC (see section D.2.3) CoreLoad has to initialize the control structures used
for a secure switch from real mode to protected mode: this is done by the creation
of the Global Descriptor Table. The Interrupt Descriptor Table Base Register
is loaded with default values. The Global Descriptor Table is the controlling
structure for memory access and program execution in protected mode.

Separating the available memory into segments is needed as otherwise no
protection could be applied.

Topsy i386 11

Seg. No. Seg. Name Seg. Size

1. NULL Blocking of selectors set invalid 0

2. Kernel Code Execution of kernel code 512KB

3. Kernel Data Kernel data segment 128MB

4. Global Data Whole virtual address space 4GB

5. VGA Text Page 0 Avoid overwritten memory mapped IO ranges 4000B

6. GDT Allow modi�cations of the GDT itself 60KB

Table D.1: GDT as initialized by CoreLoad

Table D.1 provides an overview of the basically installed Global Descriptor
Table. Further explanation is needed on the one hand of the structure itself and
on the other hand of the sizes applied.

Structuring the memory is a decision with e�ects to the running operating
system, for example the address adjustment is required as the user space is not
overlapping the kernel space, see below.

Protection mode operation of the ia32 processors requires some control struc-
tures, see section D.2.3. They are of no use to the running Topsy kernel in version
1.0, so they are completely separated from the kernel address space. They are
located in the �rst 128KB of RAM providing enough space for extensions as for
example virtually mapped memory management with hardware support. Con-
tinuous address space ends at 0xA0000 (=640KB). There the memory mapped
IO area is located. That's why the kernel code segment as a continuous direct
mapped memory block includes a range of 512KB (640KB-128KB). Initial mem-
ory management of Topsy i386 is restricted to the �rst 128MB of RAM. So, the
kernel data segment includes only a range of about 128MB of RAM.

The global data segment is provided to allow access to all potential available
RAM in ia32 environment, 4GB.

To securely avoid overwrite operations of essentially required memorymapped
IO areas the VGA text page one was separated. Extensions as displaying other
text pages or switching to graphic mode would require a redesign of this selector.

Finally the Global Descriptor Table segment selector is required to allow mod-
i�cations and extensions to the GDT when Topsy i386 is running. It could be
possible to implement the modi�cations with the Global Data Segment, but this
design was more appreciated; no o�set addition is required when modifying the
GDT, overruns of the GDT segment are blocked too. The GDT in fact was re-
stricted to 60KB. A complete real mode page could be used for the GDT (64KB),
but the lowest 4KB include on the one hand the original real mode interrupt vec-
tor table and on the other hand the BIOS information area that could be of use
when implementing for example a parallel port driver, a serial line interface or
even a harddisk driver. Further the BIOS information area is already used as
the real mode interrupt vector table is located there: simultaneously pressing
ALT-CTRL-DELETE performs a so called "warm reset" of the PC (no hardware

Topsy i386 12

Figure D.3: Memory layout of Topsy i386 v1.0

checks are performed); this requires at location 0x472 the value 0x1234 as the
real mode interrupt vector table too { if no real mode interrupt vector table is
available, the computer hangs as a consequence to a double fault exception.

This segmentation results in a physical memory layout presented in �gure
D.3.

It is important to note, that the values provided on the left side of e �gure
D.3 denote the physical location in RAM while the ones on the right side the
displacement relative to the kernel data segment start.

Switching to Protected Mode

The code fragment provided in �gure D.4 performs the complete switch to pro-
tected mode. The ia32 archtitecture starts in real mode for compatibility reasons.

In fact the "real" switch to protected mode is done when bit zero of the
control register zero (CR0) is set to one: Protected Mode Enable. The byte
sequence that coded "protected mode far jump" is not available as a mnemonic
instruction neither in GNU Tools nor in TASM: the actual code segment still is
a 16b segment.

Topsy i386 13

;Topsy i386 Lukas Ruf

;---

; Switch to Protected Mode

PM_Switch PROC NEAR

;////////////////////////////////

;/ Kernel is at right place //

;/ - Switch to PM //

;/ - Jump into Kernel //

;////////////////////////////////

LIDT FWORD PTR IDTptr ; Interrupt Descriptor Table

LGDT FWORD PTR GDTptr ; Global Descriptor Table

MOV EAX,CR0 ;

OR EAX,1 ; Switch to Protected Mode

MOV CR0,EAX ;

JMP NowInPM ; Clear Prefetch Queue

NOP

NOP

NowInPM:

MOV BX,gOSData_Sel ; Setup Data Selectors

MOV DS,BX ; D Selector

MOV ES,BX ; E Selector

MOV FS,BX ; F Selector

MOV GS,BX ; G Selector

MOV SS,BX ; S Selector

MOV EAX,OSS_TOP ; Set Top of Stack

MOV ESP,EAX

;/////////

;// PROTECTED MODE FAR JUMP TO (OSCodeSelector:OSKernBegin) =

;// C-Kernel-Start

;/////////

DB 066h ; 32 bit Data prefix

DB 067h ; 32 bit Address instruction prefix

DB 0EAh ; far jump opcode

DD cOSKern_Begin ; 32 bit Offset (Code Offset)

DW gOSCode_Sel ; 16 bit Selector (Code Selector)

RET ; This should never be executed,

PM_Switch ENDP

Figure D.4: Switch from Real to Protected Mode

Topsy i386 14

void architectureInit() {

TextSize = PAGEBOUNDARY(__getTextSize());

DataSize = PAGEBOUNDARY(__getDataSize());

VideoInit();

ClearScreen();

/* GDTInit() must come first */

GDTInit(); /* Global Descriptor Table Initialization */

/* IDTInit() must come second */

IDTInit(); /* Interrupt Descriptor Table Initialization *

TSSInit(); /* Kernel Task State Selector */

ExceptionInit(); /* Processor Exception Handling */

MemoryInit(); /* Low Level Memory Management */

InterruptInit(); /* Peripheral Interrupt Handling */

TimerInit(); /* start Timer 0 */

BuildSegMap(); /* Create this "SegMap Table" */

return;

}

Figure D.5: Architecture Init as Performed by Topsy i386

Starting the Kernel

Kernel startup is responsible for setting the basic protected mode wiring to allow
the Topsy Kernel being run without modi�cations. This wiring is managed by
the architecture init function found in Startup/ia32/init.c.

When Topsy i386 is started it �rst retrieves the binary image �le header
information. This information is preserved in the kernel data segment for further
use.

The assembler startup function sets segment selectors for security and calls
the main() function in the hardware independent Topsy startup code. The �rst
function called by main() must be the architectureInit(); the code as used in
Topsy i386 is provided in �gure D.5.

Protected Mode Control Structures

The protected mode control structures are set in the function architectureInit().
The sequence of initialization is really important. Refer to �gure D.5.

Global Descriptor Tale Initialization

The initialization of the Global Descriptor Table in fact does nothing than setting
the number of �xed implemented GDT entries. Even if this seems to be silly, it
is important as all of the function accessing and modifying the GDT depend on
this value. GDT functions are located in Memory/ia32/MMHal.c.

Topsy i386 15

Interrupt Descriptor Table Initialization

The Interrupt Descriptor Table Initialization sets up a description entry of the
IDT in the GDT. In this version of Topsy i386 the IDT is statically set to 0x10000,
right after the top of the GDT. This selector is used to access and modify the
IDT. 256 IDT entries can be set. As explained before, the �rst 32 entries are
set to handle the processor fault exceptions, the following 16 to handle the hard-
ware interrupts and the 49th entry for syscall handling, i.e. tmMsgSend() and
tmMsgRecv(). IDT functions are located in Memory/ia32/MMHal.c.

Task State Segment Table Initialization

The Task State Segment is the location where the ia32 architecture would save
the processors state when switching between processes. In Topsy i386 this seg-
ment contains only the required settings of code, data and stack segment for
protection level transition from user to kernel level. TSS functions are located in
Memory/ia32/MMHal.c.

Exception Initialization

The Exception Initialization is used to set the processor fault exception vectors to
point to the lowest level exception handling functions. For further information on
exception handling please refer to section D.3.1 on page 17. Low Level Exception
Init is implemented in Threads/ia32/TMHal.c.

Low Level Memory Initialization

The available RAM is determined by the low level memory initializer by writing
a prede�ned value to the last four bytes of a megabyte. The next opertions read
the value back and compares it to the prede�ned one. This procedure is repeated
until the read value is not equal to the written one.

This information could be used to extend the memory handling abilities of
Topsy itself, i.e. the user space could be extended from 1MB. The low level mem-
ory init already initializes the required structures for virtually mapped memory
management supported by the ia32-MMU. The space provided for this future vir-
tual mapped memory management is actually limited to 128MB but could easily
be extended to the full range of 4GB.

Peripheral Interrupt Initialization

The Peripheral Interrupt Initialization sets the hardware exception vectors in
the IDT to point to the lowest level hardware exception handling functions. For
further information on exception handling please refer to section D.3.1 on page
17. Low Level Interrupt Init is implemented in Threads/ia32/TMHal.c.

Topsy i386 16

Timer Start

Timer Start is needed there as the Timer Interrupt is the �rst and vital hardware
exception for Topsy i386. The PIC i8259 needs an explictly initialization of the
hardware interrupts. To enable the settings of Timer mode and frequency from
the portable kernel level by the function setClockValue() the low level settings are
handled here. Low Level Timer Init is implemented in Threads/ia32/TMClock.c.

Dynamically Created Segmentation Map

In Topsy the Segmentation Map Descriptor Table is build during link time. The
address of this table is statically de�ned in Make�le.mips as SEGMAP=800FFF00.
This SEGMAP is then passed to the compiler to set this value in Startup/Startup.c.

Topsy i386 generates this table using the values patched in the Binary Image
File Header in function BuildSegMap() located in Startup/ia32/Init.c. To make
the address of the so created table globally available and usable where needed
SEGMAP was de�ned as the address of this table in IOHal.c. This is not a really
beautiful solution { but the portable level should not be modi�ed when possible.

Starting the User

As already mentioned above the user program makes use of nearly the same
startup functionality, so, on the one hand as the user is linked separately into a
standalone image and on the other hand as this image is constructed the same
way: 64 Byte of binary image �le information (refer to section D.1.2), instruction
start at location 0x40.

Remarks

CoreBoot and CoreLoad were developed using TASM (Borland's Turbo Assem-
bler) Version 5. This was done as on the one hand they do only fundamental
functions not needed in protected mode while running Topsy i386 and on the
other hand when this project was started, the author already knew how to handle
the real mode assembler programming using TASM while the real mode program-
ming with the 32b GNU Tools looked not very useful to him. So the binaries
are provided together with the source code. In the near future CoreBoot and
CoreLoad are ported to as86 if this assembler supports the same functionality.
It is not appreciated to make use of hacks as splitting an image �le to receive
CoreBoot and CoreLoad separately.

Topsy i386 17

D.3 Topsy i386 Operation

This chapter discusses the solution found to solve the di�culties of porting Topsy
to ia32 architecture. It is intended to focus only to the solutions not obvious to
everybody. Only the following points include solutions not implemented in every
other freely available operating system:

Exception Handling discussed in section D.3.1.

Context Saving explained in section D.3.3.

Restore Context explained in section D.3.4.

Address Adjustment explained in section D.3.5.

D.3.1 Exception Handling

As noted before the exception handling of Topsy i386 is split into a part coded
in assembler (the so called low level exception handling) and into a "portable"
part (the exception handling itself). This was done as the ia32 provides on the
one hand a table of 256 possible exception handler addresses and on the other
hand no possibility to retrieve the cause of the exception itself if the exception
does not result from a peripheral device. A slight di�erence is noted between the
processor exceptions, the hardware interrupts and the software exception. So they
are discussed separately. The code can be found in Threads/ia32/TMHalAsm.S.

When Topsy i386 was developed it was intended to provide a most elegant
and generalized solution for exception handling that avoids redundancy wherever
possible. So some extra instruction were inserted when needed to build a consis-
tent frame. A detailed explanation of stack layout when entering an exception
handler can be found in all the books noted in the bibliography.

D.3.2 Low Level Exception Handling

The ia32 architecture provides three kinds of fault exceptions: faults, traps and
aborts. Further some of them provide an error code, that for example includes
the faulting memory address, and some do not. So, to provide a consistent stack
layout a dummy code (zero) is pushed onto the stack when no error code is
provided by the processor. Further the exception error code is saved for later
use. For a more detailed imagination see the listing in subsection D.3.2.

Di�erences to MIPS-Topsy

Topsy i386 implemented a default fault exception handling in a slightly di�erent
way to the one found in the original Topsy. The default error handlers there
display only a message and execute a call to the error handler, it distinguishes

Topsy i386 18

further the kind of exception and decides which kind of handler should be called
by implementing the following functions in Threads/mips/TMHalAsm.S:
void syscallExceptionHandler(ThreadId);
void hwExceptionHandler()

Topsy i386 generalized this default handling in providing the exception num-
ber which serves as index into a table of fault exception messages. The stan-
dardized fault exception handler then only displays the corresponding message
and executes the same call to the general error handler which kills the faulting
thread.

Specialized exception handlers can be set as normal via tmSetExceptionHan-
dler() or tmSetInterruptHandler(). This does not a�ect the low level exception
handlers.

Topsy i386 tried to leave assembler level as soon as possible and to implement
the required functionality better readable in C.

Implementation

The following code is only an extract to show the principals of the implementation
coded in Threads/ia32/TMHalAsm.S. Refer to �gure D.6 on page 20.

Code explanation (�gure D.6):

� Fault Exception Handlers
The low level fault exception handlers are named __NEx_nn__ where "nn"
is the hexadecimal number of the fault exception starting at 00 and run-
ning up to 1F, e.g. __NEx_00__ is the low level fault exception handler for
divisions by zero.
The exception number saved on the stack is coded in T_Ex_nn where "nn"
is analogous to the the note above. As some exception provide an error
code and others do not, on the one hand a macro is used to make the
name __NEx_nn__ globally available to the installer ExceptionInit() coded
in Threads/ia32/TMHal.c. and another macro is used to call the general-
ized low level exception handler.

� Interrupt Handlers
A hardware interrupt calls the corresponding low level interrupt handler
always in the same way. So only one macro entry handles the complete
function de�nition.
The low level interrupt handlers are named __NIR_nn__ and provide the
interrupt number by T_IR_nn where "nn" is corresponds to the IDT slot
number and simultaneously to the hardware interrupt number if the number
is calculated modulo 0x10.

Topsy i386 19

� Software Exception Handlers
Message passing is realized using the function tmMsgSend() and tmMs-
gRecv(). They in fact do nothing other than packing the information re-
quired and provided into processor registers and launching a software ex-
ception by INT 0x30. The low level software exception handler is de�ned
analogous to the interrupt and fault exception handlers. Two software
exception handlers are de�ned: the �rst one, named __INT_30 and pro-
viding the exception number T_IS_30, is used as the SYSCALL (known
from MIPS); the second one, named __INT_30 and providing the exception
number T_IS_30, is the handler of "unhandled" interrupts as erroneous
user or kernel programs may launch a software interrupt easily by noting
INT 0x30 anywhere in the program code. Uninitialized IDT entries may
lead to unpredictable functions, normally a general protection fault. The
second software exception handles all not used IDT entries. The addresses
are all set to this second software exception handler.

The secondly called macro TRAP() �rst saves all general purpose registers on
the stack ("pushal"), saves the provided exception number and then jumps to the
generalized low level exception handler, called __general_ExceptionHandler.

The low level generalized exception handler saves all segment selectors on
stack not implicitly saved by the processor and sets the data and extra segment
selectors to provide a standard C environment. The current top of stack pointer
is saved for stack adjustments made in the general exception handler at C level,
see �gure D.6.

Stack Frame on Entering C Code

When _INTHandler() is called the following stack frame is provided as listed in
�gure D.7 on page 21.

The exception handler in TMHal.c is de�ned as following:
void _INTHandler(unsigned int esp, struct ProcContext_t frame);

It is important that the complete ProcContext is directly referenced by de�ning
the struct and not a pointer to it. So, the processor state is retrieved by the
argument "frame".

Topsy i386 20

/* Definitions for Interrupt Handling. */

#define TRAP(_irqno_) \

pushal ; nop ; \

pushl $(_irqno_) ; \

jmp __general_ExceptionHandler

#define IRQ(_name_,_irqno_) \

.align 4 ; \

.globl _name_ ; _name_: ; \

cli ; pushl $0 ; \

TRAP(_irqno_)

/* Definitions for Exception Handling. */

/* Define the entry for IDT Vectorization:-)

Please remark: as some exception serve with an error code,

there is no generalization possible :-(*/

#define IDTVEC(_name_) .align 4 ; .globl _name_ ; _name_:

/* _INTHandler is the generalized C exception handler coded in

TMHal.c */

.extern _INTHandler

/* Define the Exception Handlers */

IDTVEC(__NEx_00) /* Divide Error */

pushl $0 /* dummy error Code */

TRAP(T_Ex_00) /* call trap handler */

IDTVEC(__NEx_0B) /* Segment not present (Error Code) */

TRAP(T_Ex_0B) /* call trap handler */

/* Define the Interrupt Handlers. */

IRQ(__NIR_00,T_IR_00)

...

IRQ(__INT_30,T_IS_30) /* Software Interrupt equals to "SYSCALL" :-) */

IRQ(__INT_31,T_IS_31) /* Software Interrupt: Block all other */

...

__general_ExceptionHandler:

pushl %ds

pushl %es

pushl %fs

pushl %gs

movl $gcKDSEL,%eax

movw %ax,%ds

movw %ax,%es

pushl %esp /* provide even current stack pointer for

stack address adjustment purposes in

_INTHandler() */

call _INTHandler /* I suppose _INTHandler() always calls */

/* restoreContext() :-) */

cli /* If this _INTHandler() ever should */

hlt /* return, hang the machine: I'm human. */

Figure D.6: Implementation details for low level exception handling

Topsy i386 21

#ifndef __TMHAL_H

#define __TMHAL_H

...

/*

* Exception Stack Frame

*/

typedef struct ProcContext_t {

int tf_gs;

int tf_fs;

int tf_es;

int tf_ds;

int tf_trapno;

int tf_edi;

int tf_esi;

int tf_ebp;

int tf_temp_esp;

int tf_ebx;

int tf_edx;

int tf_ecx;

int tf_eax;

/* NOTE: To this location tf_temp_esp is pointing to :-) */

int tf_err;

int tf_eip;

int tf_cs;

int tf_eflags;

/* below only when crossing rings (e.g. user to kernel) */

int tf_esp;

int tf_ss;

} ProcContext;

...

#endif __TMHAL_H

Figure D.7: Stack Frame

Topsy i386 22

D.3.3 Context Saving

Topsy i386 saves the processor context when an exception occurred on the stack
and passes this information to the C level code. The C code now can easily copy
the data to the context frame provided in the thread list. So, the context is saved
by C code and not as done in MIPS-Topsy by assembler code with some address
retrievals.

It is most important to note that the ia32 architecture was developed to
support multiprocessing environments. In such operating systems a process is
speci�ed by its own TSS. The ia32 architecture automatically saves and restores
the complete register set in a TSS on process transitions. No support is provided
to multi threaded operating systems. In ia32 noti�cation style Topsy i386 pro-
vides only a single tasking operating system, as only one TSS is initialized and
started { no other is required. A protection level transition can be performed in
the current task context as an exception handling without protection level tran-
sition too. If a protection level switch happens, the ia32 processor retrieves the
target code and stack segment selector as the target top of stack pointer from the
current TSS: in Topsy i386 the so called Exception Stack located physically at
0x9E000, virtually at 0x7E000 (relative to the kernel data segment start). If no
protection level transition is performed, the current stack is used for information
saving. So, the actual stack segment selector and top of stack pointer are NOT
saved to stack. To provide a unique stack layout without too complicated assem-
bler coding the C code always saves the processor context in the Topsy thread
environment �rst and then adjusts the stack settings for restore. The error code
is removed from stack by adding a de�ned constant to the Topsy thread envi-
ronment top of stack pointer. For further details please refer to the source code
provided in Threads/ia32/TMHal.c.

D.3.4 Restore Context

Processor context restoration is even more crucial in a multi threaded operating
system on ia32 architecture than the context saving. The most important code
fragment is provided in the next subsection (see section D.3.4) and explained
afterwards.

Implementation

The code restoration needs some hard core coding with stack adjustments directly.
So, not equal to the context save, it really needs coding in assembler. The
complete restore function is provided in �gure D.8 on page 23.

The reader noted that the processor context was directly restored from the
thread environment processor context space. On the one hand this provides a
really elegant solution on the other hand there is in fact no byte copy required

Topsy i386 23

/* restoreContext(ProcContextPtr Context); ******************************/

FRAME(restoreContext)

ENTER /* Execute an ENTER to function entry as to provide a stack

* frame as common in C/Topsy-Assembler */

cli /* disable interrupt execution -- we modify

* the stack directly. */

movl ARG1,%eax /* store the address of ProcContext in eax */

movl %eax,%esp /* let esp directly point to this context. */

popl %gs /* restore these two segment selectors */

popl %fs

popl %es /* restore Extra Segment Selector */

popl %ds /* restore Data Segment Selector */

addl $4,%esp /* remove INT no. from stack */

popal /* restore all general purpose registers */

addl $4,%esp /* remove err no. too */

/* No modifications were made to the stack structure provided

* by the Process Context. */

cmpl $gcKCSEL, 4(%esp) /* compare the provided Code Selector */

jne _Nothing_Has_To_Be_Done /* jump if not equal */

/* A restoration of a kernel origin has to be performed */

pushl $gcKDSEL /* make sure the stack segment equals to the */

popl %ss /* kernel data segment */

/* save %edi to xtemp: no mutex or semaphore is required as all

* ints are disabled --> directly access all */

movl %edi,%ss:xtemp /* note: here we are in kernel data segment ! */

movl 12(%esp),%edi /* %edi = tf_esp */

/* make room for the temporarily setting of EIP, CS and EFLAGS

* on the stack of the thread to be started */

subl $12,%edi

movl %eax,%ss:xtemp2 /* we can do this: SS is Kernel Data Segment */

/* %edi points to space where EIP,CS and EFLAGS have to be moved to */

movl 0(%esp),%eax

movl %eax,%ss:0(%edi) /* transfer EIP */

movl 4(%esp),%eax

movl %eax,%ss:4(%edi) /* transfer CS */

movl 8(%esp),%eax

movl %eax,%ss:8(%edi) /* transfer EFLAGS */

/* restore the previous saved %eax from the kernel data segment */

movl %ss:xtemp2,%eax

movl %edi,%esp /* now forget the old stack, move to the new */

movl %ss:xtemp,%edi /* restore the original %edi */

_Nothing_Has_To_Be_Done:

iret /* and go either to heaven or hell !! */

/**End of restoreContext()**/

Figure D.8: Assembler Code Fragment for Context Restoration

Topsy i386 24

as the context is not modi�ed while restored. The pushl and popl instructions
used in this function do only overwrite the exception number of the context to be
restored. This is no problem at this point as the processor context will be saved
by a next exception providing a new "exception number".

For further details refer to the source of the low level exception handling
provided in TMHalAsm.S and TMHal.c both located in Threads/ia32.

D.3.5 Address Adjustment

Depending on the memory layout de�ned by setting the entries in the Global De-
scriptor Table a segmentation of the RAM was realized in Topsy i386. This seg-
mentation is explicitly required to provide kernel and control structure memory
protection of the user programs. The user space starts at location 0x100000 (1MB
boundary), the kernel space at location 0x020000 (128KB boundary). Segmen-
tation in ia32 architecture provides an address space starting locally to segment
start at o�set zero.

The kernel data segment includes the user space too. This is required to
easily access that space, e.g. for program installations. User program start does
not require any address adjustment as the kernel simply "jumps" to the user
startup routine (see subsection D.2.3). But already when a thread is started and
therefore the kernel required to install a new stack segment or the user executes
an ioWrite() or ioRead() function calls kernel and user both refer to di�erent
addresses locally even the space located in RAM dereferenced is equal to both.

So, on transitions from kernel to user space and vice versa the message base
address and all bu�er addresses as included in some messages need an adjust-
ment, i.e. either an addition or a subtraction of 0xE0000 to or from the address.
This displacement is obviously retrieved from the subtraction of 0x100000 minus
0x020000, the start addresses of the user and kernel space; refer to �gure D.3 on
page 12.

These address adjustments are performed in the function msgAdjust() found
in
Threads/ia32/TMHal.c. Refer to this source for implementation details and doc-
umentation.

This solution was implemented for simplicity reason and lack of time. The
advantages of this solution are laying in its evidence for even non professionals
as in the development requirements too { no further hardware dependencies'
knowledge had to be achieved. The disadvantages are obvious too: Processing
all possible messages requires a huge amount of cycles. Further implementing a
new type of message with bu�er addresses included requires an extension of the
address adjustment function (by the way: anyone implementing a new message
type should be capable to extend the required function).

Topsy i386 25

Implementation Alternatives

Several alternatives to the implemented address adjustment can be found; some
of them are provided in table D.2.

Topsy i386 26

� Virtually Mapped Memory Management
This solution would be the perfect one. The advantages are clear: Fast,
exible, extendable. But that solution would require a big investment of
time �nding the correct solution.

� No Segmentation, One Data Segment
Not applicable as there could no memory and instruction execution protec-
tion be provided. Else equal addresses would dereference the same space in
RAM.

� Segmentation, Overlapping Data Segments
Instruction execution protection could be applied but without any protec-
tion of kernel memory regions.

� Mirroring Current Solution, Starting at 1MB Boundary
This means that both segments start at location 0x100000. First the user
space, restricted to "small" size, is overlapped by the kernel space. The
kernel is by linking relocated to the top of RAM area and must be installed
by the kernel loader to this address. The kernel so could dereference the
memory address directly. The disadvantage is obvious: On the one hand
user programs normally grow faster than kernel extensions and on the other
hand installing a version of Topsy i386 linked for one RAM equipment is
either not runable (too less RAM installed) or wastes a huge amount of
RAM as the space between the top end of the kernel area is not equal to
the size of RAM available in the system built the image.

� Creating a Kernel Alias to the User Segment
Obviously the virtually de�ned boundaries (refer to section D.2.3 on page
10) can be used several times. The kernel could install a descriptor in
the GDT that points to the user space separately but with kernel data
privileges. So both, kernel and user o�sets would be equal. This would be
the fastest solution at all as only the setting of the segment selectors would
be required. The problem for this solution is found in the Topsy portable
memory management system which is not prepared for this. Further all
modern protected mode C compilers known to the developer of Topsy i386
do not support a multi segmented memory layout.
This interesting solution possibility should point of further researches but
could not be handled as part of the semester project.

Table D.2: Alternatives to the Implemented Address Adjustment

Topsy i386 27

D.4 Remarks on ia32 Protecte Mode

The most accurate and detailed explanation of protected mode operation can
be found in the book by Tom Shanley [1]. Nevertheless a short remark will be
provided here:

The ia32 architecture starts in real mode, i.e. 20 address line are usable and
no protection mechanism can be applied. The current mode is de�ned by bit zero
of the control register zero (CR0). If this bit is set to one, the processor executes
instructions in protected mode. The protected mode itself o�ers an instruction
control depending on the four provided protection levels, a restriction of direct
access to IO ports can be installed (which is applied per process), a restriction
of memory access per process (depends on the segments installed in the GDT
or LDT), and the default operand and opertor size, i.e. a segment in protected
mode can be any combination of 16b or 32b code, resp. 16b and 32b data size.
A virtually mapped memory management is supported by the MMU.
Summary of ia32 Protected Mode:

� Protection Levels

� Instruction Control

� IO Port Control

� Memory Access Control

� Operator, Operand Size De�nition

� Virtually Mapped Memory Management

Instruction Control depends on the current protection level of the executing pro-
cess. IO Port Control is de�ned by a optionally set bitmap of accessible IO Ports
in the Task State Segment. Memory Access Control and Operator/Operand Size
De�nition depend on the segment declaration in the GDT or LDT. Virtually
Mapped Memory Management is enabled by setting bit 31 in CR0.

D.4.1 Topsy i386 Implementation

Topsy i386 runs in a segmented memory model with two protection levels: kernel
at protection level 0 and user at protection level 3. Both levels are set to operate in
fully 32b mode, i.e. the default operand and operator size is set to 32b. Memory
Access Control is granted by the two not overlapping memory spaces, resp. by the
two protection levels applied to the memory spaces. IO Port Access is restricted
to protection level 0. In version 1.0 of Topsy i386 no Virtually Mapped Memory
Management supported by the ia32 MMU is implemented.

Bibliography

[1] Protected Mode Software Architecture by Tom Shanley, Addison Wesley
1996

[2] Microsoft's 80386/80486 Programming Guide by Ross P. Nelson, 2nd Edi-
tion, Microsoft Press 1991

[3] PC Hardware Buch by Hans-Peter Messmer, 5th Edition, Addison Wesley
1998

[4] PC intern 3.0, Systemprogrammierung by Michael Tischer, 1st Edition, Data
Becker 1992

[5] Developing Your Own 32-Bit Operating System by Richard A. Burgess, 1st
Edition, Sams Publishing 1995

[6] Dissecting DOS by Michael Podano�sky, Addison Wesley 1995

[7] The Design of the UNIX Operating System by Maurice J. Bach, Prentice
Hall 1986

[8] The Magic Garden Explained, The Internals of UNIX System V Release 4
by Berny Goodheart and James Cox, Prentice Hall 1994

[9] UNIX Internals, A Practical Approach by Steve D Pate, Addison Wesley
1996

[10] An Introduction to Berkeley UNIX and ANSI C by Jack Hodges, Prentice
Hall 1995

[11] Operating Systems, Design And Implementation by Andrew S. Tannenbaum,
Prentice Hall 1987

[12] The Basic Kernel Source Code Secrets byWilliamFrederick Jolitz and Lynne
Greer Jolitz, Peer-to-Peer Communications Inc. 1996

[13] Operating Systems, A Design Oriented Approach by Charles Crowley, Irwin
1997

28

Topsy i386 29

[14] Linux-Kernel-Programmierung by Michael Beck et al., 3rd Edition, Addison
Wesley 1995

[15] IBM Personal System/2 and Personal Computer BIOS Interface Technical
Reference IBM 1987

[16] IBM Personal System/2 Hardware Interface Technical Reference IBM 1988

Topsy i386 30

D.5 Acronyms Used During the Documentation

The acronyms used during the documentation of Topsy i386 are listed in the
followin table:

IBM International Business Machine Coporation
VGA Video Graphics Adapter
GDT Global Descriptor Table
LDT Local Descriptor Table
IDT Interrupt Descriptor Table
TSS Task State Segment
GNU GNU is Not UNIX
PC Personal Computer
b bit
B Byte (=8b)
KB Kilo Byte (=1024B)
MB Mega Byte (=1024KB)
GB Giga Byte (=1024MB)
ASCII American Standard Code for Information Interchange
MMU Memory Management Unit
PIC Programmable Interrupt Controller
PIT Programmablr Intervall Timer i8253/i8254
VSM Verband Schweizerischer Maschinenindustrien
TASM Turbo Assembler by Borland International Co.

Given Problem
Semester Thesis of Lukas Ruf

April 1998 { July 1998
Computer Engineering and Networks Laboratory, ETH Zurich
Supervisor: George Fankhauser
Professor: Bernhard Plattner

Appendix E

Given Problem

E.1 Original Problem

Semesterarbeit fuer Herrn Lukas Ruf
Aufgabenstellung: Prof. Dr. B. Plattner, George Fankhauser
Thema: Topsy i386
Beginn der Arbeit: 27.3.1998
Abgabetermin: 3.7. 1998
Betreuung: George Fankhauser, Marcus Brunner
Arbeitsplatz: @home
Umgebung: PC, Gnu-Tools, Topsy Source

E.1.1 Einleitung

Topsy ist ein portables micro-kernel Betriebssystem, das am TIK fuer den Un-
terricht entworfen wurde. In der ersten Version wurde es fuer die Familie der
32-bit MIPS Prozessoren gebaut. Es zeichnet sich durch eine saubere Struk-
tur, eine hohe Portabilitaet (Trennung des Systems in hardware-abhaengige und
-unabhaengige Module) und eine gute Dokumentation [1] aus.

Weitere Dokumentation ueber Topsy ist unter http://www.tik.ee.ethz.ch/ topsy
verfugbar.

E.1.2 Aufgabenstellung

Obwohl Topsy auf einem MIPS-Simulator auf Java Virtual Machines und somit
auf fast allen Rechnern laeuft, ist eine wichtige Motivation dieser Aufgabe die
Verbreitung des Systems auf guenstiger und handelsueblicher Hardware (o�-the-
shelf). Dies sollte wiederum andere Studenten dazu anregen, mit dem System zu
experimentieren. Im weiteren eroe�net das grosse Angebot an Peripherie-Karten
fuer den PC neue Moeglichkeiten (z.B. im Netzwerk-Bereich).

Die hellgrauen Module sind fuer Topsy i386 zu implementieren

1

Topsy i386 2

i386
8259
Clock

Topsy i386 HAL

Topsy
Console
Driver

Key
board

Key
board
Driver

FS
Server

FS
(Minix,

DOS, ...)

libc, libix

Tools
(bash, make,
gas, gld, lcc,

...)

Topsy Syscall lib

Topsy Shell

Us
er

Ke
rn

el
Ha

rd
wa

re

Screen

Figure E.1: Layered Model of Topsy

In dieser Arbeit sollen die Kernel-Teile implementiert werden, die neu fuer die
PC Architektur geschrieben werden muessen. Dies sind im speziellen der intel-
HAL und die wichtigsten Treiber fuer den PC (der hellgraue Teil des Diagramms).

Die Arbeit beschraenkt sich auf diese Kernel-relevanten Teile. Es ist dabei mit
aeusserster Sorgfalt vorzugehen um eine moglichst fehlerfreie und stabile Basis
zu erarbeiten.

E.1.3 Ziele

Die Portabilitaet von Topsy wird durch Implementation gezeigt. Ein spezieller
Aspekt ist dabei die Einfuehrung eines dynamischen Laders.

Topsy laeuft auch auf handelsueblichen PCs ab intel 80386 Prozessoren. Dazu
gehoeren folgende Treiber, die ins System integriert werden sollen:

� Clock (preemption)

� Console (out)

� Keyboard (in)

Die Treiber sollen den Mechanismus des dynamischen Laders verwenden.

Topsy i386 3

E.1.4 Vorgehen

Machen Sie sich sowohl mit dem Betriebssystem Topsy wie auch mit der Zielplat-
tform (Prozessor, Peripherie) vertraut.

Stellen Sie sich die notwendigen Tools auf einer Hostumgebung (z.B. Linux)
zusammen. Dazu gehoeren gcc, gas, gld, objcopy (alle i386 oder cross-i386) und
bash, gmake, java (plattformunabhaengig).

Es ist eine Boot-Strategie zu entwickeln. Es darf mit bestehenden Loadern
und Boot-Strap-Tools gearbeitet werden, diese sollten aber frei und in Source
verfuegbar sein.

Studieren Sie die HAL-Schnittstelle von Topsy und implementieren Sie den
i386-HAL. Aehnliche Routinen koennen als Hilfstellung auch in anderen (pro-
tected mode) Betriebssystemen wie Linux oder Mach fuer i386 gefunden werden.

Fuer den PC muessen die 3 wichtigsten Treiber neu geschrieben werden:
Clock, Keyboard, Console.

Compilieren und testen Sie das neue Topsy i386 erst mit ausgeschalteten In-
terrupts. Bootet das System wie gewohnt, koennen auch die Treiber getestet
werden. Adaptieren Sie das Test-Tool Crashme um das neue System einem in-
tensiveren Test zu unterziehen.

E.1.5 Bemerkungen

Mit dem Betreuer sind woechentliche Sitzungen zu vereinbaren. In diesen Sitzun-
gen soll der Student muendlich ueber den Fortgang der Arbeit berichten und
anstehende Probleme diskutieren.

Am Ende der zweiten Woche ist ein Zeitplan fuer den Ablauf der Arbeit
vorzulegen und mit dem Betreuer abzustimmen.

Am Ende des zweiten Monats der Arbeit soll ein kurzer schriftlicher Zwis-
chenbericht abgegeben werden, der ueber den Stand der Arbeit Auskunft gibt.

Am Ende der zweiten Woche ist ein Zeitplan fuer den Ablauf der Arbeit
sowie eine schriftliche Spezi�kation der Arbeit vorzulegen und mit dem Betreuer
abzustimmen.

Bereits vorhandene Software kann uebernommenund gegebenenfalls angepasst
werden.

Die Dokumentation ist mit dem Textverarbeitungsprogramm "FrameMaker"
zu erstellen.

E.1.6 Ergebnisse der Arbeit

Neben einem muendlichen Vortrag von 20 Minuten Dauer im Rahmen des Fach-
seminars Kommunikationssysteme sind die folgenden schriftlichen Unterlagen
abzugeben:

Topsy i386 4

� Ein kurzer Bericht. Dieser enthaelt eine Darstellung der Problematik,
eine Beschreibung der untersuchten Entwurfsalternativen, eine Begruen-
dung fuer die getro�enen Entwurfsentscheidungen, sowie eine Auistung
der geloesten und ungeloesten Probleme. Eine kritische Wuerdigung der
gestellten Aufgabe und des vereinbarten Zeitplanes rundet den Bericht ab
(in vierfacher Ausfuehrung). Der Bericht soll zudem zwei neue Kapitel des
Topsy Manuals [1] (Appendix C und D) enthalten, die eine Anleitung fuer
weitere Portierungen geben ("A Guide to Porting Topsy"), und die vor-
liegende Portierung beschreiben ("The i386 Port"). Beide Appendices sind
auf Englisch zu schreiben.

� Ein Handbuch zum fertigen System bestehend aus Systemuebersicht, Im-
plementationsbeschreibung, Beschreibung der Programm- und Datenstruk-
turen sowie Hinweise zur Portierung der Programme.

� Eine Sammlung aller zum System gehoerenden Programme.

� Die vorhandenen Testunterlagen und -programme.

� Eine englischsprachige Zusammenfassung von 1 bis 2 Seiten, die einem
Aussenstehenden einen schnellen Uberblick ueber die Arbeit gestattet. Die
Zusammenfassung ist wie folgt zu gliedern: (1) Introduction, (2) Aims &
Goals, (3) Results, (4) Further Work.

E.1.7 Literatur

� G. Fankhauser, C. Conrad, E. Zitzler and B. Plattner., Topsy - A Teachable
Operating System, TIK, 1997

� Topsy home page: http://www.tik.ee.ethz.ch/ topsy

