
Rough draft

Not Authoritative

Incomplete and Inaccurate

Use at your own risk

Linux Kernel Hackers� Guide

Copyright c� ����� ���� Michael K� Johnson

A hodgepodge collection of information� speculation� and ramblings about the Linux kernel�

This is only a draft� Please mail any corrections� ampli�cations� suggestions� etc� to Michael K�

Johnson� johnsonm�sunsite�unc�edu� Editor�

Editorial comments look like this� �This is an editorial comment� I invite answers

to any questions in these comments� The more help I get on these� the fewer of

these ugly comments newer versions of the guide will have� Some of these are

merely large notices to myself to �nish some task I started� If you would like

to help by working on a section that has notes like this� please contact me to

see what help I need��

This work is currently rather fragmented� and will remain in that state until most of the

sections have been written� so that revision combining those sections can be done intelligently�

Substantial revision to occur at that time should address the problems with unnecessarily dupli�

cated information and lack of structure� and make the guide easier to follow and more succinct�

However� the section on device drivers should be helpful to some� Other sections are mostly

a little out of date and in need of revision anyway� Please bear with me� or better yet� help�

i

Copyright c� ����� ���� Michael K� Johnson

��� Howell Street� Apt� �C� Chapel Hill� North Carolina ��	�
�
���

johnsonm�sunsite�unc�edu

The Linux Kernel Hackers� Guide may be reproduced and distributed in whole or in part�

subject to the following conditions

�� The copyright notice above and this permission notice must be preserved complete on

all complete or partial copies�

�� Any translation or derivative work of The Linux Kernel Hackers� Guide must be

approved by the author in writing before distribution�

�� If you distribute The Linux Kernel Hackers� Guide in part� instructions for obtaining

the complete version of The Linux Kernel Hackers� Guide must be included� and a

means for obtaining a complete version provided�

�� Small portions may be reproduced as illustrations for reviews or quotes in other works

without this permission notice� if proper citation is given�

� The GNU General Public License referenced below may be reproduced under the

conditions given within it�

	� Several sections of this document are held under separate copyright� When these

sections are covered by a di�erent copyright� the seperate copyright is noted� If you

distribute The Linux Kernel Hackers� Guide in part� and that part is� in whole�

held under a seperate copyright� the conditions of that copyright apply�

Exceptions to these rules may be granted for academic purposes
 Write to Michael K� John�

son� at the above address� or email johnsonm�sunsite�unc�edu� and ask� These restrictions

are here to protect us as authors� not to restrict you as educators and learners�

All source code in The LinuxKernel Hackers� Guide is placed under the GNU General Pub�

lic License� See Appendix B for a copy of the GNU �GPL�� Source code for all full example

programs is available on�line as tsx����mit�edu��pub�linux�docs�hacker�source�tar�Z

and a copy of the GPL is available in that �le as COPYING� �O�K�� so it will be available

when this book is being publicly distributed� � � �

ii

UNIX is a trademark of Unix System Labratories

MS�DOS is a trademark of Microsoft Corporation�

Linux is not a trademark� and has no connection to UNIXTM or Unix System Labratories�

If any trademarks have been unintentionally unacknowledged� please inform the editor�

Michael K� Johnson� ��� Howell Street� Apt� �C� Chapel Hill� North Carolina ��	�
�
����

email johnsonm�sunsite�unc�edu�

iii

Introduction

The The Linux Kernel Hackers� Guide is inspired by all of us �kernel hacker wannabees�

who just did not know enough about unix systems to hack the Linux kernel when it �rst

came out� and had to learn slowly� This guide is designed to help you get up to speed on the

concepts that are not intuitively obvious� and to document the internal structures of Linux

so that you don�t have to read the whole kernel source to �gure out what is happening with

one variable� or to discover the purpose of one function call�

Why Linux� Well� Linux is the �rst free unix clone for the ��� to be freely available�

It is a complete re�write� and has been kept small� so it does not have a lot of the time�

honored baggage that other free operating systems �like ���BSD� carry� and so is easier to

understand and modify�

Unix has been around for over twenty years� but only in the last few years have mi�

crocomputers become powerful enough to run a modern protected� multiuser� multitasking

operating system� Furthermore� unix implementations have not been free� Because of this�

very little free documentation has been written� at least for the kernel internals�

Unix� though simple at �rst� has grown more and more appendages� and has become a

very complex system� which only �wizards� understand� With Linux� however� we have a

chance to change this� for a few reasons

� Linux has a simple kernel� with well�structured interfaces�

� One person� Linus Torvalds� has control of what code is added to Linux� and he does

this work gratis� This means that random pieces of code are not forced into the kernel

by some company�s politics� and the kernel interfaces stay relatively clean�

� The source is free� so many people can study it and learn to understand it� becoming

�wizards� in their own right� and eventually contribute code to the e�ort�

It is our hope that this book will help the nascent kernel hacker learn how to hack the

Linux kernel� by giving an understanding of how the kernel is structured�

iv

Thanks to� � �

Linus Torvalds� of course� for starting this whole time sink� and for gently providing

explanations whenever necessary� He has done a wonderful job of keeping the kernel

source code understandable and neat� I can�t imagine having learned so much in the

past year without Linux�

Krishna Balasubramanian and Douglas Johnson� for writing much of the section on

memory management� and helping with the rest�

Stanley Scalsky� for helping document the system call interface�

Rik Faith� for writing the section on how to write a SCSI device driver�

Robert Baruch� for the review of Writing UNIX Device Drivers and for his help with

the section on writing device drivers�

Kim Christian Johnson� my wife for tolerating and encouraging me in this work and

in all I do�

Copyright Acknowledgements�

Linux Memory Management� The original version of this document is copyright c� ����

Krishna Balasubramanian� Some changes copyright c� ���� Michael K� Johnson and

Douglas R� Johnson�

How System Calls Work� The original version of this document is copyright c� ����

Stanley Scalsky� Some changes copyright c� ���� Michael K� Johnson

Writing a SCSI Device Driver The original version of this document is copyright c� ����

Rickard E� Faith� Some modi�cations are copyright c� ���� Michael K� Johnson� The

author has approved the inclusion of this material� despite the slightly more restric�

tive copyright on this whole document� The original copyright restrictions� which still

apply to any work derived solely from this work� are

v

Copyright c� ���� Rickard E� Faith �faith�cs�unc�edu�� All rights re�

served� Permission is granted to make and distribute verbatim copies of this

paper provided the copyright notice and this permission notice are preserved

on all copies�

If you wish to make a derived work� please start from the original document� To do

so� please contact Rickard E� Faith� faith�cs�unc�edu� The original is available for

anonymous ftp as ftp�cs�unc�edu
�pub�faith�papers�scsi�paper�tar�gz�

Contents

� Before You Begin� � � �

��� Typographical Conventions �

��� Assumptions �

��� Hacking Wisdom �

� Device Drivers 	

��� What is a Device Driver�

��� User�space device drivers � 	

����� Example
 vgalib �

����� Example
 mouse conversion �

��� Device Driver Basics �

����� Namespace �

����� Allocating memory �

����� Character vs� block devices �

����
 Interrupts vs� Polling ��

����	 The sleep�wakeup mechanism ��

����� The VFS ��

��
 Character Device Drivers ��

��
�� Initialization ��

��
�� Interrupts vs� Polling ��

��
�� TTY drivers ��

vi

CONTENTS vii

��
�
 Example Drivers ��

��	 Block Device Drivers �

��	�� Initialization �

��	�� The Bu�er Cache ��

��	�� The Strategy Routine ��

��	�
 Example Drivers ��

��� Supporting Functions ��

��� Writing a SCSI Device Driver ��

����� Why You Want to Write a SCSI Driver � � � � � � � � � � � � � � � � ��

����� What is SCSI� ��

����� SCSI Commands �
�

����
 Getting Started �

����	 Before You Begin
 Gathering Tools � � � � � � � � � � � � � � � � � � �

����� The Linux SCSI Interface �
	

����� The Scsi Host Structure �
	

����� The Scsi Cmnd Structure � 	�

��� Acknowledgements ��

��� Network Device Drivers ��

 The �proc �lesystem ��

��� �proc Directories and Files ��

��� Structure of the �proc �lesystem ��

��� Programming the �proc �lesystem ��

� How System Calls Work
�

��� What Does the ��� Provide� ��

��� How Linux Uses Interrupts and Exceptions � � � � � � � � � � � � � � � � � � ��

��� How Linux Initializes the system call vectors � � � � � � � � � � � � � � � � � ��

��
 How to Add Your Own System Calls ��

CONTENTS viii

	 Linux Memory Management ��

�� Overview �	

�� Physical memory ��

�� A user process� view of memory ��

�
 Memory Management data in the process table � � � � � � � � � � � � � � � � ��

�	 Memory initialization ��

�	�� Processes and the Memory Manager � � � � � � � � � � � � � � � � � � ��

�� Acquiring and Freeing Memory
 Paging Policy � � � � � � � � � � � � � � � � ��

�� The page fault handlers �

�� Paging �	

�� ����� Memory Mangament ��

���� Paging on the ��� ��

���� Segments in the ����� ��

���� Selectors in the ����� ���

���
 Segment descriptors ���

���	 Macros used in setting up descriptors � � � � � � � � � � � � � � � � � ���

A Annotated Bibliography ���

B The GNU General Public License ��

B�� Preamble ���

B�� Terms and Conditions ���

B�� How to Apply These Terms ���

Chapter �

Before You Begin� � �

��� Typographical Conventions

Bold Used to mark new concepts� WARNINGS� and keywords in a language�

italics Used for emphasis in text� and occasionally for quotes or introductions at

the beginning of a section�

slanted Used to mark meta�variables in the text� especially in representations of

the command line� For example�

ls �l foo

where foo would �stand for� a �lename� such as �bin�cp� Sometimes� this

might be di�cult to see� and so the text is put in angle brackets� like this

hslantedi�

Typewriter Used to represent screen interaction� as in

ls �l �bin�cp

�rwxr�xr�x � root wheel ����� Sep �� ����	 �bin�cp

Also used for code examples� whether it is �C� code� a shell script� or some�

thing else� and to display general �les� such as con�guration �les� When

necessary for clarity�s sake� these examples or �gures will be enclosed in thin

boxes�

Key Represents a key to press� You will often see it in this form

Press return to continue�

�

��
� Assumptions �

� A diamond in the margin� like a black diamond on a ski hill� marks �danger�

or �caution�� Read paragraphs marked this way carefully�

��� Assumptions

To read The Linux Kernel Hackers� Guide� you should have a reasonably good understand�

ing of C� That is� you should be able to read C code without having to look up everything�

You should be able to write simple C programs� and understand struct�s� pointers� macros�

and ANSI C prototyping� You do not have to have a thorough knowledge of the standard

I�O library� because the standard libraries are not available in the kernel� Some of the more

often used standard I�O functions have been rewritten for use within the kernel� but these

are explained in this book where necessary�

You should be able to use a good text editor� recompile the Linux kernel� and do basic

system administration tasks� such as making new device entries in �dev��

You should also be able to read� as I do not o�er support for this book� � �

�Hello� sir� I�m having some problems with this book you wrote��

�Yes��

�I can�t read it��

�Is it plugged in��

�Yes� I also tried a lamp in that socket� so I know it is getting power� But I

really don�t think that�s the problem��

�Why not��

�I can�t read��

� Oh� Well� let�s start here� See this� Repeat after me
 The cat sat on the

rat� � ��

��� Hacking Wisdom

This is a collection of little things that you need to know before you start hacking� It is

rather rambling� and almost resembles a glossary in form� but it is not a reference� but

rather a hacker�s narative� a short course in kernel hacking�

Static variables

Always initialize static variables� I cannot overemphasize this� Many seemingly random

bugs have been caused by not initializing static variables� Because the kernel is not really a

���� Hacking Wisdom �

standard executable� the bss segment may or may not be zeroed� depending on the method

used for booting�

libc unavailable

Much of libc is unavailable� That is� all of libc is unavailable� but many of the most

common functions are duplicated� See the section �not here yet� for simple documentation

of these functions� Most of the documentation for these are the section � and section � man

pages�

Linux is not unixTM

However� it is close� It is not plan �� nor is it Mach� It is not primarily intended to be

a great commercial success� People will not look kindly upon suggestions to change it

fundamentally to attain any of these goals� It has been suggested that part of the reason

that the quality of the Linux kernel is so high is the unbending devotion of the Linux

kernel hackers to having fun playing with their new kernel�

Useful references

You will encounter certain references that you will need to understand� For instance�

�Stevens� and �Bach�� Read the annotated bibliography �Appendix A� for a list of books

that you should at least recognize references to� even if you have not read them�

Read the FAQ

Chapter �

Device Drivers

��� What is a Device Driver�

Making hardware work is tedious� To write to a hard disk� for example� requires that you

write magic numbers in magic places� wait for the hard drive to say that it is ready to receive

data� and then feed it the data it wants� very carefully� To write to a �oppy disk is even

harder� and requires that the program supervise the �oppy disk drive almost constantly

while it is running�

Instead of putting code in each application you write to control each device� you share

the code between applications� To make sure that that code is not compromised� you protect

it from users and normal programs that use it� If you do it right� you will be able to add and

remove devices from your system without changing your applications at all� Furthermore�

you need to be able to load your program into memory and run it� which the operating

system also does� So� an operating system is essentially a preiviledged� general� sharable

library or low�level hardware and memory and process control functions and routines�

All versions of un�x have an abstract way of reading and writing devices� By making

the devices act as much as possible like regular �les� the same calls �read��� write��� etc��

can be used for devices and �les� Within the kernel� there are a set of functions� registered

with the �lesystem� which are called to handle requests to do I�O on �device special �les��

which are those which represent devices��

All devices controlled by the same device driver are given the same major number�

and of those with the same major number� di�erent devices are distinguished by di�erent

minor numbers��

�See mknod����� for an explanation of how to make these �les�
�This is not strictly true� but is close enough� If you understand where it is not true� you don�t need

��
� User�space device drivers 	

This chapter explains how to write any type of Linux device driver that you might

need to� including character� block� SCSI� and network drivers� �Well� it will when it is

done� � � � It explains what functions you need to write� how to initialize your drivers and

obtain memory for them e�ciently� and what function are built in to Linux to make your

job easier�

Creating device drivers for Linux is easier than you might think� It merely involves

writing a few functions and registering them with the Virtual Filesystem Switch �VFS�� so

that when the proper device special �les are accessed� the VFS can call your functions�

However� a word of warning is due here
 Writing a device driver is writing a part of

the Linux kernel� This means that your driver runs with kernel permissions� and can do

anything it wants to
 write to any memory� reformat your hard drive� damage your monitor

or video card� or even break your dishes� if your dishwasher is controlled by your computer�

Be careful�

Also� your driver will run in kernel mode� and the Linux kernel� like most un�x kernels�

is non�pre�emptible� This means that if you driver takes a long time to work without giving

other programs a chance to work� your computer will appear to �freeze� when your driver

is running� Normal user�mode pre�emptive scheduling does not apply to your driver�

If you choose to write a device driver� you must take everything written here as a guide�

and no more� I cannot guarantee that this chapter will be free of errors� and I cannot

guarantee that you will not damage your computer� even if you follow these instructions

exactly� It is highly unlikely that you will damage it� but I cannot guarantee against it�

There is only one �infallible� direction I can give you
 Back up� Back up before you test

your new device driver� or you may regret it later�

��� User�space device drivers

It is not always necessary to write a device driver for a device� especially in applications

where no two applications will compete for the device� The most useful example of this

is a memory�mapped device� but you can also do this with devices in I�O space �devices

accessed with inb�� and outb��� etc��� If your process is running as superuser �root�� you

can use the mmap�� call to map some of your process memory to actual memory locations�

by mmap���ing a section of �dev�mem� When you have done this mapping� it is pretty

easy to write and read from real memory addresses just as you would read and write any

variables�

to read this section� and if you don�t but want to learn� read the code for the tty devices� which uses up �

major numbers� and may use a third and possibly fourth by the time you read this�

��
� User�space device drivers �

If your driver needs to respond to interrupts� �I suppose there should be a discus�

sion of interrupts before this� � � � then you really need to be working in kernel space�

and need to write a real device driver� as there is no way at this time to deliver interrupts

to user processes�

If your driver must be accessible to multiple processes� and�or manage contention for a

resource� then you also need to write a real device driver�

����� Example� vgalib

A good example of a user�space driver is the vgalib library� The standard read�� and

write�� calls are really inadequate for writing a really fast graphics driver� and so instead

there is a library which acts conceptually like a device driver� but runs in user space� Any

processes which use it must run setuid root� because it uses the ioperm�� system call� It is

possible for a process that is not setuid root to write to �dev�mem if you have a group mem

or kmem which is allowed write permission to �dev�mem and the process is properly setgid�

but only a process running as root can execute the ioperm�� call�

There are several I�O ports associated with VGA graphics� vgalib creates symbolic

names for this with 	define statements� and then issues the ioperm�� call like this to make

it possible for the process to read and write directly from and to those ports

if
ioperm
CRT�IC� �� �

 �

printf
�VGAlib� can�t get I�O permissions �n�
�

exit
��
�

�

ioperm
CRT�IM� �� �
�

ioperm
ATT�IW� �� �
�

�� � � �

It only needs to do error checking once� because the only reason for the ioperm�� call to

fail is that it is not being called by the superuser� and this status is not going to change�

After making this call� the process is allowed to use inb and outb machine instructions�

but only on the speci�ed ports� These instructions can be accessed without writing directly

in assembly by including
linux�asm�� Read
linux�asm� for details�

After arranging for port I�O� vgalib arranges for writing directly to kernel memory

with the following code

�� open �dev�mem ��

��
� User�space device drivers �

if

mem�fd � open
��dev�mem�� O�RDWR

 � �
 �

printf
�VGAlib� can�t open �dev�mem �n�
�

exit
��
�

�

�� mmap graphics memory ��

if

graph�mem � malloc
GRAPH�SIZE �
PAGE�SIZE��

 �� NULL
 �

printf
�VGAlib� allocation error �n�
�

exit
��
�

�

if

unsigned long
graph�mem � PAGE�SIZE

graph�mem �� PAGE�SIZE �

unsigned long
graph�mem � PAGE�SIZE
�

graph�mem �
unsigned char �
mmap

caddr�t
graph�mem�

GRAPH�SIZE�

PROT�READ�PROT�WRITE�

MAP�SHARED�MAP�FIXED�

mem�fd�

GRAPH�BASE

�

if

long
graph�mem � �
 �

printf
�VGAlib� mmap error �n�
�

exit
��
�

�

It �rst opens �dev�mem� then allocates memory enough so that the mapping can be done

on a page �
 KB� boundary� and then attempts the map� GRAPH SIZE is the size of VGA

memory� and GRAPH BASE is the �rst address of VGA memory in �dev�mem� Then by

writing to the address that is returned by mmap��� the process is actually writing to screen

memory�

����� Example� mouse conversion

If you want a driver that acts a bit more like a kernel�level driver� but does not live in kernel

space� you can also make a �fo� or named pipe� This usually lives in the �dev� directory

�although it doesn�t need to� and acts substantially like a device once set up� However�

�fo�s are one�directional only � they have one reader and one writer�

For instance� it used to be that if you had a PS���style mouse� and wanted to run

XFree��� you had to create a �fo called �dev�mouse� and run a program called mconv which

read PS�� mouse �droppings� from �dev�psaux� and wrote the equivalent microsoft�style

�droppings� to �dev�mouse� Then XFree�� would read the �droppings� from �dev�mouse�

���� Device Driver Basics �

and it would be as if there were a microsoft mouse connected to �dev�mouse��

��� Device Driver Basics

We will assume that you decide that you do not wish to write a user�space device� and

would rather implement your device in the kernel� You will probably be writing writing two

�les� a �c �le and a �h �le� and possibly modifying other �les as well� as will be described

below� We will refer to your �les as foo�c and foo�h� and your driver will be the foo driver�

�Should I include at the beginning of this chapter an example of chargen and

charsink� Many writers do� but I don�t know that it is the best way� I�d like

people�s opinions on this��

����� Namespace

One of the �rst things you will need to do� before writing any code� is to name your device�

This name should be a short �probably two or three character� string� For instance� the

parallel device is the �lp� device� the �oppies are the �fd� devices� and SCSI disks are the

�sd� devices� As you write your driver� you will give your functions names pre�xed with

your chosen string to avoid any namespace confusion� We will call your pre�x foo� and

give your functions names like foo read��� foo write��� etc�

����� Allocating memory

Memory allocation in the kernel is a little di�erent from memory allocation in normal

user�level programs� Instead of having a malloc�� capable of delivering almost unlimited

amounts of memory� there is a kmalloc�� function that is a bit di�erent

� The largest size that can be allocated is � page�
��� bytes� and all memory is provided

in pieces whose size is a power of �� You can request any odd size� but memory will not

be used any more e�ciently if you request a ���byte piece than it will if you request

a �� byte piece�

� kmalloc�� takes a second argument� the priority� This is used as an argument to the

get free page�� function� where it is used to determine when to return� The usual

priority is GFP KERNEL� If it may be called from within an interrupt� use GFP ATOMIC

and be truly prepared for it to fail �i�e� don�t panic�� This is because if you specify

�Even though XFree�� is now able to read PS�� style 	droppings
� the concepts in this example still

stands� If you have a better example� I�d be glad to see it�

���� Device Driver Basics �

GFP KERNEL� kmalloc�� may sleep� which cannot be done on an interrupt� The other

option is GFP BUFFER� which is used only when the kernel is allocating bu�er space�

and never in device drivers�

To free memory allocated with kmalloc��� use one of two functions
 kfree�� or kfree s���

These di�er from free�� in a few ways as well

� kfree�� is a macro which calls kfree s�� and acts like the standard free�� outside

the kernel�

� If you know what size object you are freeing� you can speed things up by calling

kfree s�� directly� It takes two arguments
 the �rst is the pointer that you are

freeing� as in the single argument to kfree��� and the second is the size of the object

being freed�

See section ��� for more information on kmalloc��� kfree��� and other useful functions�

The other way to acquire memory is to allocate it at initialization time� Your initializa�

tion function� foo init��� takes one argument� a pointer to the current end of memory� It

can take as much memory as it wants to� save a pointer or pointers to that memory� and

return a pointer to the new end of memory� The advantage of this over statically allocating

large bu�ers �char bar
������� is that if the foo driver detects that the foo device is not

attached to the computer� the memory is not wasted� The init�� function is discussed in

Section ������

����� Character vs� block devices

There are two main types of devices under all un�x systems� character and block devices�

Character devices are those for which no bu�ering is performed� and block devices are those

which are accessed through a cache� Block devices must be random access� but character

devices are not required to be� though some are� Filesystems can only be mounted if they

are on block devices�

Character devices are read from and written to with two function
 foo read�� and

foo write��� The read�� and write�� calls do not return until the operation is complete�

By contrast� block devices do not even implement the read�� and write�� functions� and

instead have a function which has historically been called the �strategy routine�� Reads

and writes are done through the bu�er cache mechanism by the generic functions bread���

breada��� and bwrite��� These functions go through the bu�er cache� and so may or may

not actually call the strategy routine� depending on whether or not the block requested is

in the bu�er cache �for reads� or on whether or not the bu�er cache is full �for writes�� A

���� Device Driver Basics ��

request may be asyncronous
 breada�� can request the strategy routine to schedule reads

that have not been asked for� and to do it asyncronously� in the background� in the hopes

that they will be needed later� A more complete explanation of the bu�er cache is presented

below in Section ��

The sources for character devices are kept in � � ��kernel�chr drv�� and the sources for

block devices are kept in � � ��kernel�blk drv�� They have similar interfaces� and are very

much alike� except for reading and writing� Because of the di�erence in reading and writing�

initialization is di�erent� as block devices have to register a strategy routine� which is

registered in a di�erent way than the foo read�� and foo write�� routines of a character

device driver� Speci�cs are dealt with in Section ��
�� and Section ��	��

����� Interrupts vs� Polling

Hardware is slow� That is� in the time it takes to get information from your average device�

the CPU could be o� doing something far more useful than waiting for a busy but slow

device� So to keep from having to busy�wait all the time� interrupts are provided which

can interrupt whatever is happening so that the operating system can do some task and

return to what it was doing without losing information� In an ideal world� all devices

would probably work by using interrupts� However� on a PC or clone� there are only a few

interrupts available for use by your peripherals� so some drivers have to poll the hardware

ask the hardware if it is ready to transfer data yet� This unfortunately wastes time� but it

sometimes needs to be done�

Also� some hardware �like memory�mapped displays� is as fast as the rest of the machine�

so an interrupt�driven driver would be rather silly� even if interrupts were provided�

In Linux� many of the drivers are interrupt�driven� but some are not� and at least one

can be either� and can be switched back and forth at runtime� For instance� the lp device

�the parallel port driver� normally polls the printer to see if the printer is ready to accept

output� and if the printer stays in a not ready phase for too long� the driver will sleep for

a while� and try again later� This improves system performance� However� if you have a

parallel card that supplies an interrupt� the driver will utilize that� which will usually make

performance even better�

There are some important programming di�erences between interrupt�driven drivers

and polling drivers� To understand this di�erence� you have to understand a little bit of

how system calls work under un�x� The kernel is not a separate task under un�x� Rather�

it is as if each process has a copy of the kernel� When a process executes a system call�

it does not transfer control to another process� but rather� the process changes execution

modes� and is said to be �in kernel mode�� In this mode� it executes kernel code which is

���� Device Driver Basics ��

trusted to be safe�

In kernel mode� the process can still access the user�space memory that it was previously

executing in� which is done through a set of macros
 get fs ��� and memcpy fromfs��

read user�space memory� and put fs ��� and memcpy tofs�� write to user�space memory�

Because the process is still running� but in a di�erent mode� there is no question of where

in memory to put the data� or where to get it from� However� when an interrupt occurs�

any process might currently be running� so these macros cannot be used � if they are� they

will either write over random memory space of the running process or cause the kernel to

panic�

Instead� when scheduling the interrupt� a driver must also provide temporary space in

which to put the information� and then sleep� When the interrupt�driven part of the driver

has �lled up that temporary space� it wakes up the process� which copies the information

from that temporary space into the process� user space and returns� In a block device

driver� this temporary space is automatically provided by the bu�er cache mechanism� but

in a character device driver� the driver is responsible for allocating it itself�

����� The sleep�wakeup mechanism

�Begin by giving a general description of how sleeping is used and what it does�

This should mention things like all processes sleeping on an event are woken at

once� and then they contend for the event again� etc� � � �

Perhaps the best way to try to understand the Linux sleep�wakeup mechanism is to

read the source for the sleep on�� function� used to implement both the sleep on�� and

interruptible sleep on�� calls�

static inline void ��sleep�on
struct wait�queue ��p� int state

�

unsigned long flags�

struct wait�queue wait � � current� NULL ��

if
�p

return�

if
current �� task���

panic
�task��� trying to sleep�
�

current��state � state�

add�wait�queue
p� �wait
�

save�flags
flags
�

sti

�

schedule

�

remove�wait�queue
p� �wait
�

���� Device Driver Basics ��

restore�flags
flags
�

�

A wait queue is a circular list of pointers to task structures� de�ned in
linux�wait�h�

to be

struct wait�queue �

struct task�struct � task�

struct wait�queue � next�

��

state is either TASK INTERRUPTIBLE or TASK UNINTERUPTIBLE� depending on whether or

not the sleep should be interruptable by such things as system calls� In general� the sleep

should be interruptible if the device is a slow one� one which can block inde�nitely� including

terminals and network devices or pseudodevices�

add wait queue�� turns o� interrupts� if they were enabled� and adds the new struct

wait queue declared at the beginning of the function to the list p� It then recovers the

original interrupt state �enabled or disabled�� and returns�

save flags�� is a macro which saves the process �ags in its argument� This is done

to preserve the previous state of the interrupt enable �ag� This way� the restore flags��

later can restore the interrupt state� whether it was enabled or disabled� sti�� then allows

interrupts to occur� and schedule�� �nds a new process to run� and switches to it� Schedule

will not choose this process to run again until the state is changed to TASK RUNNING by

wake up�� called on the same wait queue� p� or conceivably by something else�

The process then removes itself from the wait queue� restores the orginal interrupt

condition with restore flags��� and returns�

Whenever contention for a resource might occur� there needs to be a pointer to a

wait queue associated with that resource� Then� whenever contention does occur� each pro�

cess that �nds itself locked out of access to the resource sleeps on that resource�s wait queue�

When any process is �nished using a resource for which there is a wait queue� it should

wake up and processes that might be sleeping on that wait queue� probably by calling

wake up��� or possibly wake up interruptible���

If you don�t understand why a process might want to sleep� or want more details on

when and how to structure this sleeping� I urge you to buy one of the operating systems

textbooks listed in Appendix A and look up mutual exclusion and deadlock�

�This is a cop�out� I should take the time to explain and give examples� but I

am not trying to write an OS text� and I want to keep this under ���� pages� � � �

���� Device Driver Basics ��

������� More advanced sleeping

If the sleep on���wake up�� mechanism in Linux does not satisfy your device driver needs�

you can code your own versions of sleep on�� and wake up�� that �t your needs� For an

example of this� look at the serial device driver �� � ��kernel�chr drv�serial�c� in function

block til ready��� where quite a bit has to be done between the add wait queue�� and

the schedule���

����	 The VFS

The Virtual Filesystem Switch� or VFS� is the mechanism which allows Linux to mount

many di�erent �lesystems at the same time� In the �rst versions of Linux� all �lesystem

access went straight into routines which understood the minix �lesystem� To make it

possible for other �lesystems to be written� �lesystem calls had to pass through a layer

of indirection which would switch the call to the routine for the correct �lesystem� This

was done by some generic code which can handle generic cases and a structure of pointers

to functions which handle speci�c cases� One structure is of interest to the device driver

writer� the file operations structure�

From �usr�include�linux�fs�h

struct file�operations �

int
�lseek

struct inode �� struct file �� off�t� int
�

int
�read

struct inode �� struct file �� char �� int
�

int
�write

struct inode �� struct file �� char �� int
�

int
�readdir

struct inode �� struct file �� struct dirent ��

int count
�

int
�select

struct inode �� struct file �� int�

select�table �
�

int
�ioctl

struct inode �� struct file �� unsigned int�

unsigned int
�

int
�mmap

struct inode �� struct file �� unsigned long�

size�t� int� unsigned long
�

int
�open

struct inode �� struct file �
�

void
�release

struct inode �� struct file �
�

��

Essentially� this structure constitutes a parital list of the functions that you may have

to write to create your driver�

This section details the actions and requirements of the functions in the file operations

structure� It documents all the arguments that these functions take� �It should also detail

all the defaults� and cover more carefully the possible return values�

���� Device Driver Basics �

������� The lseek�� function

This function is called when the system call lseek�� is called on the device special �le

representing your device� An understanding of what the system call lseek�� does should

be su�cient to explain this function� which moves to the desired o�set� It takes these four

arguments

struct inode � inode

Pointer to the inode structure for this device�

struct file � file

Pointer to the �le structure for this device�

off t offset

O�set from origin to move to�

int origin � � take the o�set from absolute o�set � �the beginning��

� � take the o�set from the current position�

� � take the o�set from the end�

lseek�� returns �errno on error� or � � the absolute position after the lseek�

If there is no lseek��� the kernel will take the default action� which is to modify

the file��f pos element� For an origin of �� the default action is to return �EINVAL

if file��f inode is NULL� otherwise it sets file��f pos to file��f inode��i size �

offset� Because of this� if lseek�� should return an error for your device� you must write

an lseek�� function which returns that error�

������
 The read�� and write�� functions

The read and write functions read and write a character string to the device� If there is no

read�� or write�� function in the file operations structure registered with the kernel�

and the device is a character device� read�� or write�� system calls� respectively� will return

�EINVAL� If the device is a block device� these functions should not be implemented� as the

VFS will route requests through the bu�er cache� which will call your strategy routine� See

Section ��	�� for details on how the bu�er cache does this� The read and write functions

take these arguments

struct inode � inode

This is a pointer to the inode of the device special �le which was accessed�

From this� you can do several things� based on the struct inode dec�

���� Device Driver Basics �	

laration about ��� lines into �usr�include�linux�fs�h� For instance� you

can �nd the minor number of the �le by this construction
 unsigned int

minor � MINOR�inode��i rdev�� The de�nition of the MINOR macro is in

linux�fs�h�� as are many other useful de�nitions� Read fs�h and a few

device drivers for more details� and see section ��� for a short description�

inode��i mode can be used to �nd the mode of the �le� and there are macros

available for this� as well�

struct file � file

Pointer to �le structure for this device�

char � buf This is a bu�er of characters to read or write� It is located in user�space

memory� and therefore must be accessed using the get fs���� put fs����

and memcpy�fs�� macros detailed in section ���� User�space memory is

inaccessible during an interrupt� so if your driver is interrupt driven� you

will have to copy the contents of your bu�er into a queue�

int count This is a count of characters in buf to be read or written� It is the size of

buf� and is how you know that you have reached the end of buf� as buf is

not guaranteed to be null�terminated�

������� The readdir�� function

This function is another artifact of file operations being used for implementing �lesys�

tems as well as device drivers� Do not implement it� The kernel will return �ENOTDIR if the

system call readdir�� is called on your device special �le�

������	 The select�� function

The select�� function is generally most useful with character devices� It is usually used

to multiplex reads without polling � the application calls the select�� system call� giving

it a list of �le descriptors to watch� and the kernel reports back to the program on which

�le descriptor has woken it up� It is also used as a timer� However� the select�� func�

tion in your device driver is not directly called by the system call select��� and so the

file operations select�� only needs to do a few things� Its arguments are

struct inode � inode

Pointer to the inode structure for this device�

���� Device Driver Basics ��

struct file � file

Pointer to the �le structure for this device�

int sel type

The select type to perform

SEL IN read

SEL OUT write

SEL EX exception

select table � wait

If wait is not NULL and there is no error condition caused by the select�

select�� should put the process to sleep� and arrange to be woken up when

the device becomes ready� usually through an interrupt� If wait is NULL�

then the driver should quickly see if the device is ready� and return even if

it is not� The select wait�� function does this already�

If the calling program wants to wait until one of the devices upon which it is selecting

becomes available for the operation it is interested in� the process will have to be put to sleep

until one of those operations becomes available� This does not require use of a sleep on���

function� however� Instead the select wait�� function is used� �See section ��� for the

de�nition of the select wait�� function�� The sleep that select�� causes is very similar

to that of sleep on interruptible��� and� in fact� wake up interruptible�� is used to

wake the process�

However� select wait�� will return � and the select�� function will return� The

process isn�t put to sleep until the system call sys select�� uses the information given to

it by the select wait�� function and puts the process to sleep� select wait�� adds the

process to the wait queue� and sys select�� puts the process to sleep�

The �rst argument to select wait�� is the same wait queue that should be used for

a sleep on��� and the second is the select table that was passed to your select��

function�

After having explained all this in excruciating detail� here are two rules to follow

�� Call select wait�� if the device is not ready� and return ��

�� Return � if the device is ready�

If you provide a select�� function� do not provide timeouts by setting current��timeout�

as the select mechanism uses current��timeout� and the two methods cannot co�exist� as

there is only one timeout for each process� Instead� consider using a timer to provide time�

outs� Just be sure that you need to use a timer before you call add timer��� as the whole

���� Device Driver Basics ��

system currently has only �
 timers� and the kernel will panic if it tries to install more than

�
 timers concurrently� �I believe that this has change recently� Check this out��

������� The ioctl�� function

The ioctl�� function processes ioctl calls� The structure of your ioctl�� function will be

�rst error checking� then one giant �possibly nested� switch statement to handle all possible

ioctls� The ioctl number is passed as cmd� and the argument to the ioctl is passed as arg�

It is good to have an understanding of how ioctls ought to work before making them up�

If you are not sure about your ioctls� do not feel ashamed to ask someone knowledgeable

about it� for a few reasons
 you may not even need an ioctl for your purpose� and if you

do need an ioctl� there may be a better way to do it than what you have thought of� Since

ioctls are the least regular part of the device interface� it takes perhaps the most work to

get this part right� Take the time and energy you need to get it right�

struct inode � inode

Pointer to the inode structure for this device�

struct file � file

Pointer to the �le structure for this device�

unsigned int cmd

This is the ioctl command� It is generally used as the switch variable for a

case statement�

unsigned int arg

This is the argument to the command� This is user de�ned� Since this is

the same size as a �void ��� this can be used as a pointer to user space�

accessed through the fs register as usual�

Returns� �errno on error

Every other return is user�de�ned�

If the ioctl�� slot in the file operations structure is not �lled in� the VFS will return

�EINVAL� However� in all cases� if cmd is one of FIOCLEX� FIONCLEX� FIONBIO� or FIOASYNC�

default processing will be done

FIOCLEX �x	
	�

Sets the close�on�exec bit�

���� Device Driver Basics ��

FIONCLEX �x	
	�

Clears the close�on�exec bit�

FIONBIO �x	
��

If arg is non�zero� set O NONBLOCK� otherwise clear O NONBLOCK�

FIOASYNC �x	
	�

If arg is non�zero� set O SYNC� otherwise clear O SYNC� O SYNC is not yet

implemented� but it is documented here and parsed in the kernel for com�

pleteness�

Note that you have to avoid these four numbers when creating your own ioctls� as if they

con�ict� the VFS ioctl code will interpret them as being one of these four� and act appro�

priately� causing a very hard to track down bug�

������� The mmap�� function

struct inode � inode

Pointer to inode structure for device�

struct file � file

Pointer to �le structure for device�

unsigned long addr

Beginning of address in main memory to mmap�� into�

size t len Length of memory to mmap���

int prot One of

PROT READ region can be read�

PROT WRITE region can be written�

PROT EXEC region can be executed�

PROT NONE region cannot be accessed�

unsigned long off

O�set in the �le to mmap�� from� This address in the �le will be mapped to

address addr�

�Here� give a pointer to the documentation for the new vmm �Vir�

tual Memory Mangament� interface� and show how the functions

can be used by a device mmap�� function� Krishna should have the

documentation for the vmm interface in the memory management

���� Device Driver Basics ��

section��

������
 The open�� and release�� functions

struct inode � inode

Pointer to inode structure for device�

struct file � file

Pointer to �le structure for device�

open�� is called when a device special �les is opened� It is the policy mechanism responsible

for ensuring consistency� If only one process is allowed to open the device at once� open��

should lock the device� using whatever locking mechanism is appropriate� usually setting a

bit in some state variable to mark it as busy� If a process already is using the device �if the

busy bit is already set� then open�� should return �EBUSY� If more than one process may

open the device� this function is responsible to set up any necessary queues that would not

be set up in write��� If no such device exists� open�� should return �ENODEV to indicate

this� Return � on success�

release�� is called only when the process closes its last open �le descriptor on the �les�

If devices have been marked as busy� release�� should unset the busy bits if appropriate�

If you need to clean up kmalloc���ed queues or reset devices to preserve their sanity� this

is the place to do it� If no release�� function is de�ned� none is called�

������� The init�� function

This function is not actually included in the file operations structure� but you are re�

quired to implement it� because it is this function that registers the file operations

structure with the VFS in the �rst place � without this function� the VFS could not route

any requests to the driver� This function is called when the kernel �rst boots and is con�

�guring itself� init�� is passed a variable holding the address of the current end of used

memory� The init function then detects all devices� allocates any memory it will want based

on how many devices exist �this is often used to hold such things as queues� for interrupt

driven devices�� and then� saving the addresses it needs� it returns the new end of memory�

You will have to call your init�� function from the correct place
 for a character device�

this is chr dev init�� in � � ��kernel�chr dev�mem�c� In general� you will only pass the

memory start variable to your init�� function�

While the init�� function runs� it registers your driver by calling the proper registration

��	� Character Device Drivers ��

function� For character devices� this is register chrdev���� register chrdev�� takes

three arguments
 the major device number �an int�� the �name� of the device �a string��

and the address of the device fops file operations structure�

When this is done� and a character or block special �le is accessed� the VFS �lesystem

switch automagically routes the call� whatever it is� to the proper function� if a function

exists� If the function does not exist� the VFS routines take some default action�

The init�� function usually displays some information about the driver� and usually

reports all hardware found� All reporting is done via the printk�� function�

��� Character Device Drivers

�Write appropriate blurb here�

����� Initialization

Besides functions de�ned by the file operations structure� there is at least one other

function that you will have to write� the foo init�� function� You will have to change

chr dev init�� in chr drv�mem�c to call your foo init�� function� foo init�� will take

one argument� long mem start� which will be the address of the current end of allocated

memory� If your driver needs to allocate more than
K of contiguous space at runtime� here

is the place� Simply save mem start in an appropriate variable� add however much space

you need to mem start� and return the new value� Your driver will now have exclusive

access to the memory between the old and new values of mem start�

foo init�� should �rst call register chrdev�� to register itself and avoid device num�

ber contention� register chrdev�� takes three arguments

int major This is the major number which the driver wishes to allocate�

char �name This is the symbolic name of the driver� It is currently not used for anything�

but this may change in the future�

struct file operations �f ops

This is the address of your file operations structure de�ned in Section ��

Returns� � if no other character device has registered with the same major number�

non�� if the call fails� presumably because another character device has al�

ready allocated that major number�

�See section��

��	� Character Device Drivers ��

Generally� the foo init�� routine will then attempt to detect the hardware that it is

supposed to be driving� It should make sure that all necessary data structures are �lled out

for all present hardware� and have some way of ensuring that non�present hardware does

not get accessed� �detail di�erent ways of doing this��

����� Interrupts vs� Polling

In a polling driver� the foo read�� and foo write�� functions are pretty easy to write�

Here is an example of foo read��

static int foo�write
struct inode � inode� struct file � file�

char � buf� int count

�

unsigned int minor � MINOR
inode��i�rdev
�

char ret�

while
count � �
 �

ret � foo�write�byte
minor
�

if
ret � �
 �

foo�handle�error
WRITE� ret� minor
�

continue�

�

buf�� � ret� count��

�

return count�

�

foo write byte�� and foo handle error�� are either functions de�ned elsewhere in foo�c

or pseudocode� WRITE would be a constant or 	define�

It should be clear from this example how to code the foo read�� function as well�

Interrupt�driven drivers are a little more di�cult� Here is an example of a foo write��

that is interrupt�driven

static int foo�write
struct inode � inode� struct file � file�

char � buf� int count

�

unsigned int minor � MINOR
inode��i�rdev
�

unsigned long copy�size�

unsigned long total�bytes�written � ��

unsigned long bytes�written�

struct foo�struct �foo � �foo�table�minor��

��	� Character Device Drivers ��

do �

copy�size �
count �� FOO�BUFFER�SIZE � count � FOO�BUFFER�SIZE
�

memcpy�fromfs
foo��foo�buffer� buf� copy�size
�

while
copy�size
 �

�� initiate interrupts ��

if
some�error�has�occured
 �

�� handle error condition ��

�

current��timeout � jiffies � FOO�INTERRUPT�TIMEOUT�

�� set timeout in case an interrupt has been missed ��

interruptible�sleep�on
�foo��foo�wait�queue
�

bytes�written � foo��bytes�xfered�

foo��bytes�written � ��

if
current��signal � current��blocked
 �

if
total�bytes�written � bytes�written

return total�bytes�written � bytes�written�

else

return �EINTR� �� nothing was written� system

call was interrupted� try again ��

�

�

total�bytes�written �� bytes�written�

buf �� bytes�written�

count �� bytes�written�

� while
count � �
�

return total�bytes�written�

�

static void foo�interrupt
int irq

�

struct foo�struct �foo � �foo�table�foo�irq�irq���

�� Here� do whatever actions ought to be taken on an interrupt!

Look at a flag in foo�table to know whether you ought to be

reading or writing! ��

�� Increment foo��bytes�xfered by however many characters were

��	� Character Device Drivers ��

read or written ��

if
buffer too full�empty

wake�up�interruptible
�foo��foo�wait�queue
�

�

Again� a foo read�� function is written analagously� foo table
� is an array of

structures� each of which has several members� some of which are foo wait queue and

bytes xfered� which can be used for both reading and writing� foo irq
� is an array of

�� integers� and is used for looking up which entry in foo table
� is associated with the

irq generated and reported to the foo interrupt�� function�

To tell the interrupt�handling code to call foo interrupt��� you need to use either

request irq�� or irqaction��� This is either done when foo open�� is called� or if you

want to keep things simple� when foo init�� is called� request irq�� is the simpler of

the two� and works rather like an old�style signal handler� It takes two arguments
 the �rst

is the number of the irq you are requesting� and the second is a pointer to your interrupt

handler� which must take an integer argument �the irq that was generated� and have a

return type of void� request irq�� returns �EINVAL if irq � �	 or if the pointer to the

interrupt handler is NULL� �EBUSY if that interrupt has already been taken� or � on success�

irqaction�� works rather like the user�level sigaction��� and in fact reuses the

sigaction structure� The sa restorer�� �eld of the sigaction structure is not used� but

everything else is the same� See the entry for irqaction�� in Section ���� Supporting

Functions� for further information about irqaction���

����� TTY drivers

�The reasons that this section has not been written are that I don�t know enough

about TTY stu� yet and that right now� Linux is pretty dependant on the fact

that only major number 	 holds any TTY devices� All these major numbers are

pretty much taken up already� Somebody needs to do something about this�

but until then� there�s not much to be done��

����� Example Drivers

In this section� we will examine some real Linux device drivers that are actually a part of

the kernel� This is a rather long section� but I think a worthwhile one� �Or will be rather

long� when I re�write it to be actually useful� � � �

���� Block Device Drivers �

��	 Block Device Drivers

To mount a �lesystem on a device� it must be a block device� This means that the device

must be a random access device� not a stream device� In other words� you must be able to

seek to any location on the physical device at any time�

You do not provide read�� and write�� routines for a block device� Instead� you use

block read�� and block write��� which are generic functions which will call a strategy

routine which you provide� This strategy routine is also called by the bu�er cache�See

section ���� which is called by the VFS routines �See chapter ��� which is how normal �les

on normal �lesystems are read and written�

These requests are given to a routine called ll rw block��� which constructs lists of

requests ordered by an elevator algorithm� which sorts the lists to make accesses faster

and more e�cient�

Note that although SCSI disks and CDROMs are considered block devices� they are

handled specially� Refer to section ���� Writing a SCSI Driver� for details��

����� Initialization

Initialization of block devices is a bit more complex than initialization of character de�

vices� especially as some �initialization� has to be done at compile time� There is also a

register blkdev�� call that corresponds to the character device register chrdev�� call�

which the driver must call to say that it is present� working� and active�

������� The �le blk�h

At the top of your driver code� after all other included header �les� you need to write two

lines of code

"define MAJOR NR hni

"include �blk!h�

where hni is the major number of your device� kernel�blk drv�blk�h requires the useof the

MAJOR NR de�ne to set up many other de�nes and macros for your driver�

Now you need to edit blk�h� Under 	ifdef MAJOR NR� there is a section of de�nes that

are conditionally included for certain major numbers� protected by 	elif �MAJOR NR ��

�Although SCSI didsks and CDROMs are block devices� SCSI tapes� like other tapes� are generally used

as character devices� However� they are in kernel�blk drv�scsi like all the other SCSI devices for the sake of

convenience�

���� Block Device Drivers �	

hni�� At the end of this list� you will add another section for your driver� In that section�

the following lines are required

"define DEVICE NAME �device�

"define DEVICE REQUEST do dev request

"define DEVICE ON
device
 �� usually blank� see below ��

"define DEVICE OFF
device
 �� usually blank� see below ��

"define DEVICE NR
device

MINOR
device

DEVICE NAME is simply the device name� See the other entries in blk�h for examples�

DEVICE REQUEST is your strategy routine� which will do all the I�O on the device� See

section ��	�� for more details on the strategy routine�

DEVICE ON and DEVICE OFF are for devices that need to be turned on and o�� like foppies�

In fact� the �oppy driver is currently the only device driver which uses these de�nes�

DEVICE NR�device� is used to determine the number of the physical device from the

minor device number� For instance� in the hd driver� since the second hard drive starts at

minor �
� DEVICE NR�device� is de�ned to be �MINOR�device����� instead�

If your driver is interrupt�driven� you will also set

"define DEVICE INTR do dev

which will become a variable automatically de�ned and used by the remainder of blk�h�

speci�cally by the SET INTR�� and CLEAR INTR macros�

You might also consider setting these de�nes

"define DEVICE TIMEOUT DEV TIMER

"define TIMEOUT VALUE n

where n is the number of ji�es �clock ticks� hundredths of a second on Linux����� to time

out after if no interrupt is received� These are used if your device can become �stuck�
 a

condition where the driver waits inde�nitely for an interrupt that will never arrive� If you

de�ne these� they will automatically be used in SET INTR to make your driver time out� Of

course� your driver will have to be able to handle the possibility of being timed out by a

timer� See section �� for an explanation of how to do this�

������
 Recognizing PC standard partitions

�Inspect the routines in genhd�c and include detailed� correct instructions on

how to use them to allow your device to use the standard dos partitioning

���� Block Device Drivers ��

scheme��

����� The Bu
er Cache

�Here� it should be explained brie�y how ll rw block�� is called� about get�

blk�� and bread�� and breada�� and bwrite��� etc� A real explanation of the

bu�er cache is reserved for the VFS reference section� where something on the

complexity order of Bach�s treatment of the bu�er cache should exist�

For now� we assume that the reader understands the concepts behind the

bu�er cache� If you are a reader and don�t� please email me and I�ll help you�

which will also help me put my thoughts together for that section��

����� The Strategy Routine

All reading and writing of blocks is done through the strategy routine� This routine takes

no arguments and returns nothing� but it knows where to �nd a list of requests for I�O

�CURRENT� de�ned by default as blk dev
MAJOR NR��current request�� and knows how to

get data from the device into the blocks� It is called with interrupts disabled so as to avoid

race conditions� and is responsible for turning on interrupts with a call to sti�� before

returning�

The strategy routine �rst calls the INIT REQUEST macro� which makes sure that requests

are really on the request list and does some other sanity checking� add request�� will have

already sorted the requests in the proper order according to the elevator algorithm �using

an insertion sort� as it is called once for every request�� so the strategy routine �merely�

has to satisfy the request� call end request���� which will take the request o� the list� and

then if there is still another request on the list� satisfy it and call end request���� until

there are no more requests on the list� at which time it returns�

If the driver is interrupt�driven� the strategy routine need only schedule the �rst request

to occur� and have the interrupt�handler call end request��� and the call the strategy

routine again� in order to schedule the next request� If the driver is not interrupt�driven�

the strategy routine may not return until all I�O is complete�

If for some reason I�O fails permanently on the current request� end request��� must

be called to destroy the request�

A request may be for a read or write� The driver determines whether a request is for a

read or write by examining CURRENT��cmd� If CURRENT��cmd �� READ� the request is for a

read� and if CURRENT��cmd �� WRITE� the request is for a write� If the device has seperate

���� Supporting Functions ��

interrupt routines for handling reads and writes� SET INTR�n� must be called to assure that

the proper interrupt routine will be called�

�Here I need to include samples of both a polled strategy routine and an

interrupt�driven one� The interrupt�driven one should provide seperate read

and write interrupt routines to show the use of SET INTR��

����� Example Drivers

�I�m not sure this belongs here � we�ll see� I�ll leave the stub here for now��

��
 Supporting Functions

Here is a list of many of the most common supporting functions available to the device

driver writer

�Please �ll in any missing information� especially De�ned in� parts�

add request��

static void add�request�struct blk�dev�struct �dev�

struct request � req�

This is a static function in ll rw block�c� and cannot be called by other code�

However� an understnading of this function� as well as an understanding of

ll rw block��� may help you understand the strategy routine�

If the device that the request is for has an empty request queue� the re�

quest is put on the queue and the strategy routine is called� Otherwise� the

proper place in the queue is chosen and the request is inserted in the queue�

maintaining proper order by insertion sort�

Proper order �the elevator algorithm� is de�ned as

a� Reads come before writes�

b� Lower minor numbers come before higher minor numbers�

c� Lower block numbers come before higher block numbers�

De�ned in� kernel�blk drv�ll rw block�c

See also� make request��� ll rw block���

add timer�� void add timer�long jiffies� void ��fn��void��

	include
linux�sched�h�

���� Supporting Functions ��

Causes a function to be executed when a given amount of time has passed�

Takes the following arguments

jiffies The number of ji�es ����ths of a second� to time out after�

fn Kernel�space function to run after timeout has occured

Note� This is not process�speci�c� Therefore� if you want to wake a certain

process at this timeout� you will have to use the sleep and wake primitives�

Also� be cautious� as the kernel will panic if over �
 timers are set� �Is this

still true� There was noise about dynamically allocated timers

some time ago��

De�ned in�

See also�

cli�� 	define cli�� asm volatile ��cli����

	include
asm�system�h�

Prevents interrupts from being acknowledged� cli stands for �CLear Inter�

rupt enable��

See also� sti��

end request��

static void end request�int uptodate�

	include �blk�h�

Called when a request has been satis�ed or aborted� Takes one argument

uptodate If not equal to �� means that the request has been satis�ed�

If equal to �� means that the request has not been satis�ed�

If the request was satis�ed �uptodate �� ��� end request�� maintains the

request list� unlocks the bu�er� and may arrange for the scheduler to be

run at the next convenient time �need resched � ��� before waking up

all processes sleeping on the wait for request event� which is slept on in

make request��� ll rw page��� and ll rw swap file���

Note� This function is a static function� de�ned in kernel�blk drv�blk�h

for every non�scsi device that includes blk�h� It includes several de�nes

dependent on static device information� such as the device number� This is

marginally faster than a normal c function which is more generic�

���� Supporting Functions ��

De�ned in� kernel�blk drv�blk�h

See also� ll rw block��� add request��� make request���

free irq�� void free irq�unsigned int irq�

	include
linux�sched�h�

Frees an irq previously aquired with request irq�� or irqaction��� Takes

one argument

irq interrupt level to free�

De�ned in�

See also� request irq��� irqaction���

get fs��� inline unsigned char get fs byte�const char � addr�

inline unsigned short get fs word�const unsigned short � addr�

inline unsigned long get fs long�const unsigned long �addr�

	include
asm�segment�h�

Allows a driver to access data in user space� which is in a di�erent segment

than the kernel� When entering the kernel through a system call� a selector

for the current user space segment is put in the fs segment register� thus the

names�

Note� these functions may cause implicit I�O� if the memory being accessed

has been swapped out� and therefore pre�emption may occur at this point�

Do not include these functions in critical sections of your code unless the

critical sections are protected by cli���sti�� pairs�

These functions take one argument

addr Address to get data from�

Returns� Data at that o�set in the fs segment�

De�ned in�

See also� memcpy �fs��� put fs���� cli��� sti���

inb��� inb p��

inline unsigned int inb�unsigned short port�

inline unsigned int inb p�unsigned short port�

	include
asm�io�h�

���� Supporting Functions ��

Reads a byte from a port� inb�� goes as fast as it can� while inb p�� pauses

before returning� Some devices are happier if you don�t read from them as

fast as possible� Both functions take one argument

port Port to read byte from�

Returns� The byte is returned in the low byte of the ���bit integer� and

the � high bytes are unused� and may be garbage� �Or are

they cleared� Find this out��

De�ned in�

See also� outb��� outb p���

irqaction�� int irqaction�unsigned int irq� struct sigaction �new�

	include
linux�sched�h�

Hardware interrupts are really a lot like signals� Therefore� it makes sense

to be able to register an interrupt like a signal� The sa restorer�� �eld

of the struct sigaction is not used� but otherwise it is the same� The

int argument to the sa�handler�� function may mean di�erent things� de�

pending on whether or not the IRQ is installed with the SA INTERRUPT �ag�

If it is not installed with the SA INTERRUPT �ag� then the argument passed

to the handler is a pointer to a register structure� and if it is installed with

the SA INTERRUPT �ag� then the argument passed is the number of the IRQ�

For an example of handler set to use the SA INTERRUPT �ag� look at how

rs interrupt�� is installed in � � ��kernel�chr drv�serial�c

The SA INTERRUPT �ag is used to determine whether or not the interrupt

should be a �fast� interrupt� Normally� and for all interrupts installed by

request irq��� upon return from the interrupt� need resched� a global �ag�

is checked� If it is set ��� ��� then schedule�� is run� which may schedule

another process to run� They are also run with all other interrupts still

enabled� However� by setting the sigaction structure member sa flags to

SA INTERRUPT�

irqaction�� takes two arguments

irq The number of the IRQ the driver wishes to acquire�

new A pointer to a sigaction struct�

Returns� �EBUSY if the interrupt has already been acquired�

�EINVAL if sa�handler�� is NULL�

���� Supporting Functions ��

� on success�

De�ned in�

See also� request irq��� free irq��

IS ��inode� IS RDONLY�inode� ��inode���i flags � MS RDONLY�

IS NOSUID�inode� ��inode���i flags � MS NOSUID�

IS NODEV�inode� ��inode���i flags � MS NODEV�

IS NOEXEC�inode� ��inode���i flags � MS NOEXEC�

IS SYNC�inode� ��inode���i flags � MS SYNC�

	include
linux�fs�h�

These �ve test to see if the inode is on a �lesystem mounted the correspond�

ing �ag�

kfree��� 	define kfree�x� kfree s��x�� ��

void kfree s�void � obj� int size�

	include
linux�kernel�h�

Free memory previously allocated with kmalloc��� There are two possible

arguments

obj Pointer to kernel memory to free�

size To speed this up� if you know the size� use kfree s�� and

provide the correct size� This way� the kernel memory allo�

cator knows which bucket cache the object belongs to� and

doesn�t have to search all of the buckets� �For more details

on this terminology� read � � ��lib�malloc�c�

De�ned in�

See also� kmalloc���

kmalloc�� void � kmalloc�unsigned int len� int priority�

	include
linux�kernel�h�

Allocates a chunk of memory no larger than
��� bytes� and which will be

allocated in chunks which are powers of two� kmalloc�� takes two argu�

ments

len Length of memory to allocate� Must not exceed
���� or the

kernel will complain �kmalloc called with impossibly large

argument��

���� Supporting Functions ��

priority GFP KERNEL or GFP ATOMIC� If GFP KERNEL is chosen� kmalloc��

may sleep� allowing pre�emption to occur� This is the normal

way of calling kmalloc��� However� there are cases where

it is better to return immediately if no pages are available�

without attempting to sleep to �nd one� One of the places in

which this is true is in the swapping code� because it could

cause race conditions� and another in the networking code�

where things can happen at much faster speed that things

could be handled by swapping to disk to make space for giv�

ing the networking code more memory� �Another reason

for using GFP ATOMIC is if it is being called from an

interrupt� when you cannot sleep� I have not yet

checked to see if this is the case in either of these

examples� but I suspect it might��

Returns� NULL on failure�

Pointer to allocated memory on success�

De�ned in�

See also� kfree��

ll rw block��

void ll rw block�int rw� int nr� struct buffer head �bh
��

	include
linux�fs�h�

No device driver will ever call this code
 it is called only through the bu�er

cache� However� an understanding of this function may help you understnad

the function of the strategy routine�

After sanity checking� if there are no pending requests on the device�s re�

quest queue� ll rw block�� �plugs� the queue so that the requests don�t

go out until all the requests are in the queue� sorted by the elevator algo�

rithm� make request�� is then called for each request� If the queue had

to be plugged� then the strategy routine for that device is not active� and

it is called� with interrupts disabled� It is the responsibility of the

strategy routine to re�enable interrupts�

De�ned in� kernel�blk drv�ll rw block�c

See also� make request��� add request���

MAJOR�� 	define MAJOR�a� ���unsigned��a������

	include
linux�fs�h�

���� Supporting Functions ��

This takes a �� bit device number and gives the associated major number

by shifting o� the minor number�

See also� MINOR���

make request��

static void make request�int major� int rw� struct buffer head �bh�

This is a static function in ll rw block�c� and cannot be called by other code�

However� an understnading of this function� as well as an understanding of

ll rw block��� may help you understand the strategy routine�

make request�� �rst checks to see if the request is readahead or writeahead

and the bu�er is locked� If so� it simply ignores the request and returns�

Otherwise� it locks the bu�er and� except for SCSI devices� checks to make

sure that write requests don�t �ll the queue� as read requests should take

precedence�

If no spaces are available in the queue� and the request is neither readahead

nor writeahead� make request�� sleeps on the even wait for request� and

tries again when woken� When a space in the queue is found� the request

information is �lled in and add request�� is called to actually add the

request to the queue�

De�ned in� kernel�blk drv�ll rw block�c

See also� add request��� ll rw block���

MINOR�� 	define MINOR�a� ��a���xff�

	include
linux�fs�h�

This takes a �� bit device number and gives the associated minor number

by masking o� the major number�

See also� MAJOR���

memcpy �fs��

inline void memcpy�tofs�void � to� const void � from�

unsigned long n�

inline void memcpy�fromfs�void � to� const void � from�

unsigned long n�

	include
asm�segment�h�

Copies memory between user space and kernel space in chunks larger than

one byte� word� or long� Be very careful to get the order of the arguments

right�

���� Supporting Functions �

Note� these functions may cause implicit I�O� if the memory being accessed

has been swapped out� and therefore pre�emption may occur at this point�

Do not include these functions in critical sections of your code unless the

critical sections are protected by cli���sti�� pairs�

These take three arguments

to Address to copy data to�

from Address to copy data from�

n Number of bytes to copy�

De�ned in�

See also� get fs���� put fs���� cli��� sti���

outb��� outb p��

inline void outb�char value� unsigned short port�

inline void outb p�char value� unsigned short port�

	include
asm�io�h�

Writes a byte to a port� outb�� goes as fast as it can� while outb p�� pauses

before returning� Some devices are happier if you don�t write to them as fast

as possible� Both functions take two arguments

value The byte to write�

port Port to write byte to�

De�ned in�

See also� inb��� inb p���

printk�� int printk�const char� fmt� ����

	include
linux�kernel�h�

printk�� is a version of printf�� for the kernel� with some restrictions� It

cannot handle �oats� and has a few other limitations� which are documented

in kernel�vsprintf�c� It takes a variable number of arguments

fmt Format string� printf�� style�

��� The rest of the arguments� printf�� style�

Returns� Number of bytes written�

���� Supporting Functions �	

Note� printk�� may cause implicit I�O� if the memory�

being accessed has been swapped out� and therefore pre�

emption may occur at this point� Also� printk�� will set the

interrupt enable �ag� so never use it in code protected

by cli��� �But is it supposed to��

De�ned in� kernel�vsprintf�c� kernel�syslog�c

put fs��� inline void put fs byte�char val� char �addr�

inline void put fs word�short val� short �addr�

inline void put fs long�unsigned long val� unsigned long �addr�

	include
asm�segment�h�

Allows a driver to write data in user space� which is in a di�erent segment

than the kernel� When entering the kernel through a system call� a selector

for the current user space segment is put in the fs segment register� thus the

names�

Note� these functions may cause implicit I�O� if the memory being accessed

has been swapped out� and therefore pre�emption may occur at this point�

Do not include these functions in critical sections of your code unless the

critical sections are protected by cli���sti�� pairs�

These functions take two arguments

val Value to write

addr Address to write data to�

De�ned in�

See also� memcpy �fs��� get fs���� cli��� sti���

register �dev��

int register�chrdev�unsigned int major� const char �name�

struct file�operations �fops�

int register�blkdev�unsigned int major� const char �name�

struct file�operations �fops�

	include
linux�fs�h� 	include
linux�errno�h�

Registers a device with the kernel� letting the kernel check to make sure that

no other driver has already grabbed the same major number� Takes three

arguments

���� Supporting Functions ��

major Major number of device being registered�

name Unique string identifying driver� Not currently used� but it

should be in the future�

fops Pointer to a file operations structure for that device�

Returns� �EINVAL if major is � MAX CHRDEV or MAX BLKDEV �de�ned in

linux�fs�h��� for character or block devices� respectively�

�EBUSY if major device number has already been allocated�

� on success�

De�ned in�

See also�

request irq��

int request irq�unsigned int irq� void ��handler��int��

	include
linux�sched�h�

	include
linux�errno�h�

Request an IRQ from the kernel� and install an IRQ interrupt handler if

successful� Takes two arguments

irq The IRQ being requested�

handler The handler to be called when the IRQ occurs� The argument

to the handler function will be the number of the IRQ that

it was invoked to handle�

Returns� �EINVAL if irq � �	 or handler � NULL�

�EBUSY if irq is already allocated�

� on success�

De�ned in�

See also� free irq���

select wait��

inline void select�wait�struct wait�queue ��wait�address�

select�table �p�

	include
linux�sched�h�

���� Supporting Functions ��

Add a process to the proper select wait queue� This function takes two

arguments

wait address

Address of a wait queue pointer to add to the circular list of

waits�

p If p is NULL� select wait does nothing� otherwise the current

process is put to sleep� This should be the select table

�wait variable that was passed to your select�� function�

De�ned in�

See also� �sleep on��� wake up���

�sleep on�� void sleep on�struct wait queue �� p�

void interruptible sleep on�struct wait queue �� p�

	include
linux�sched�h�

Sleep on an event� putting a wait queue entry in the list so that the pro�

cess can be woken on that event� sleep on�� goes into an uninteruptible

sleep
 The only way the process can run is to be woken by wake up���

interruptible sleep on�� goes into an interruptible sleep that can be wo�

ken by signals and process timeouts will cause the process to wake up� A

call to wake up interruptible�� is necessary to wake up the process and

allow it to continue running where it left o�� Both take one argument

p Pointer to a proper wait queue structure that records the

information needed to wake the process�

De�ned in�

See also� select wait��� wake up����

sti�� 	define sti�� asm volatile ��sti����

	include
asm�system�h�

Allows interrupts to be acknowledged� sti stands for �SeT Interrupt en�

able��

De�ned in�

See also� cli���

sys get��� int sys getpid�void�

int sys getuid�void�

���� Supporting Functions ��

int sys getgid�void�

int sys geteuid�void�

int sys getegid�void�

int sys getppid�void�

int sys getpgrp�void�

	include
linux�sys�h�

These system calls may be used to get the information described in the table

below� or the information can be extracted directly from the process table�

like this

foo � current��pid�

pid Process ID

uid User ID

gid Group ID

euid E�ective user ID

egid E�ective group ID

ppid Process ID of process� parent process

pgid Group ID of process� parent process

De�ned in�

wake up��� void wake up�struct wait queue �� p�

void wake up interruptible�struct wait queue �� p�

	include
linux�sched�h�

Wakes up a process that has been put to sleep by the matching �sleep on��

function� wake up�� can be used to wake up tasks in a queue where the tasks

may be in a TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE state� while

wake up interruptible��will only wake up tasks in a TASK INTERRUPTIBLE

state� and will be insigni�cantly faster than wake up�� on queues that have

only interruptible tasks� These take one argument

q Pointer to the wait queue structure of the process to be wo�

ken�

De�ned in�

See also� select wait��� �sleep on��

��
� Writing a SCSI Device Driver ��

��� Writing a SCSI Device Driver

Copyright c� ���� Rickard E� Faith �faith�cs�unc�edu	� All rights reserved� Per

mission is granted to make and distribute verbatim copies of this paper provided the

copyright notice and this permission notice are preserved on all copies�

This is �with the author�s explicit permission	 a modi�ed copy of the original doc

ument� If you wish to reproduce just this section
 you are advised to get the original

version by ftp from ftp�cs�unc�edu��pub�faith�papers�scsi�paper�tar�gz

����� Why You Want to Write a SCSI Driver

Currently� the Linux kernel contains drivers for the following SCSI host adapters
 Adaptec

�	
�� Adaptec ��
�� Future Domain TMC������TMC������ Seagate ST����ST���� Ultra�

Stor �
F� and Western Digital WD������ You may want to write your own driver for an

unsupported host adapter� You may also want to re�write or update one of the existing

drivers�

����� What is SCSI�

The foreword to the SCSI�� standard draft �! gives a succinct de�nition of the Small

Computer System Interface and brie�y explains how SCSI�� is related to SCSI�� and CCS

The SCSI protocol is designed to provide an e�cient peer�to�peer I�O bus

with up to � devices� including one or more hosts� Data may be transferred asyn�

chronously at rates that only depend on device implementation and cable length�

Synchronous data transfers are supported at rates up to �� mega�transfers per

second� With the �� bit wide data transfer option� data rates of up to
�

megabytes per second are possible�

SCSI�� includes command sets for magnetic and optical disks� tapes� print�

ers� processors� CD�ROMs� scanners� medium changers� and communications

devices�

In ���	� when the �rst SCSI standard was being �nalized as an American

National Standard� several manufacturers approached the X�T��� Task Group�

They wanted to increase the mandatory requirements of SCSI and to de�ne

further features for direct�access devices� Rather than delay the SCSI standard�

X�T��� formed an ad hoc group to develop a working paper that was eventually

called the Common Command Set �CCS�� Many disk products were designed

using this working paper in conjunction with the SCSI standard�

In parallel with the development of the CCS working paper� X�T��� began

work on an enhanced SCSI standard which was named SCSI��� SCSI�� included

��
� Writing a SCSI Device Driver
�

the results of the CCS working paper and extended them to all device types�

It also added caching commands� performance enhancement features� and other

functions that X�T��� deemed worthwhile� While SCSI�� has gone well beyond

the original SCSI standard �now referred to as SCSI���� it retains a high degree

of compatibility with SCSI�� devices�

��
�
�� SCSI phases

The �SCSI bus� transfers data and state information between interconnected SCSI devices�

A single transaction between an �initiator� and a �target� can involve up to � distinct

�phases�� These phases are almost entirely determined by the target �e�g�� the hard disk

drive�� The current phase can be determined from an examination of �ve SCSI bus signals�

as shown in Table ��� �� p� 	�!�

�SEL �BSY �MSG �C�D �I�O PHASE

HI HI � � � BUS FREE

HI LO � � � ARBITRATION

I I"T � � � SELECTION

T I"T � � � RESELECTION

HI LO HI HI HI DATA OUT

HI LO HI HI LO DATA IN

HI LO HI LO HI COMMAND

HI LO HI LO LO STATUS

HI LO LO LO HI MESSAGE OUT

HI LO LO LO LO MESSAGE IN

I � Initiator Asserts� T � Target Asserts� � � HI or LO

Table ���
 SCSI Bus Phase Determination

Some controllers �notably the inexpensive Seagate controller� require direct manipula�

tion of the SCSI bus�other controllers automatically handle these low�level details� Each

of the eight phases will be described in detail�

BUS FREE Phase

The BUS FREE phase indicates that the SCSI bus is idle and is not currently

being used�

ARBITRATION Phase

The ARBITRATION phase is entered when a SCSI device attempts to gain

��
� Writing a SCSI Device Driver
�

control of the SCSI bus� Arbitration can start only if the bus was previously

in the BUS FREE phase� During arbitration� the arbitrating device asserts

its SCSI ID on the DATA BUS� For example� if the arbitrating device�s

SCSI ID is �� then the device will assert �x��� If multiple devices attempt

simultaneous arbitration� the device with the highest SCSI ID will win� Al�

though ARBITRATION is optional in the SCSI�� standard� it is a required

phase in the SCSI�� standard�

SELECTION Phase

After ARBITRATION� the arbitrating device �now called the initiator� as�

serts the SCSI ID of the target on the DATA BUS� The target� if present�

will acknowledge the selection by raising the �BSY line� This line remains

active as long as the target is connected to the initiator�

RESELECTION Phase

The SCSI protocol allows a device to disconnect from the bus while process�

ing a request� When the device is ready� it reconnects to the host adapter�

The RESELECTION phase is identical to the SELECTION phase� with the

exception that it is used by the disconnected target to reconnect to the origi�

nal initiator� Drivers which do not currently support RESELECTION do not

allow the SCSI target to disconnect� RESELECTION should be supported

by all drivers� however� so that multiple SCSI devices can simultaneously

process commands� This allows dramatically increased throughput due to

interleaved I�O requests�

COMMAND Phase

During this phase� �� ��� or �� bytes of command information are transferred

from the initiator to the target�

DATA OUT and DATA IN Phases

During these phases� data are transferred between the initiator and the tar�

get� For example� the DATA OUT phase transfers data from the host adapter

to the disk drive� The DATA IN phase transfers data from the disk drive to

the host adapter� If the SCSI command does not require data transfer� then

neither phase is entered�

STATUS Phase

This phase is entered after completion of all commands� and allows the target

to send a status byte to the initiator� There are nine valid status bytes� as

��
� Writing a SCSI Device Driver
�

shown in Table ��� �� p� ��!� Note that since bits� �#	 are used for the

status code �the other bits are reserved�� the status byte should be masked

with �x�e before being examined�

Valuey Status

�x�� GOOD

�x�� CHECK CONDITION

�x�
 CONDITION MET

�x�� BUSY

�x�� INTERMEDIATE

�x�
 INTERMEDIATE�CONDITION MET

�x�� RESERVATION CONFLICT

�x�� COMMAND TERMINATED

�x�� QUEUE FULL
y After masking with
x�e

Table ���
 SCSI Status Codes

The meanings of the three most important status codes are outlined below

GOOD The operation completed successfully�

CHECK CONDITION

An error occurred� The REQUEST SENSE command should

be used to �nd out more information about the error �see sec�

tion �������

BUSY The device was unable to accept a command� This may occur

during a self�test or shortly after power�up�

MESSAGE OUT and MESSAGE IN Phases

Additional information is transferred between the target and the initiator�

This information may regard the status of an outstanding command� or

may be a request for a change of protocol� Multiple MESSAGE IN and

MESSAGE OUT phases may occur during a single SCSI transaction� If

RESELECTION is supported� the driver must be able to correctly process

the SAVE DATA POINTERS� RESTORE POINTERS� and DISCONNECT

messages� Although required by the SCSI�� standard� some devices do not

automatically send a SAVE DATA POINTERS message prior to a DISCON�

�Bit
 is the least signi�cant bit�

��
� Writing a SCSI Device Driver
�

NECT message�

����� SCSI Commands

Each SCSI command is �� ��� or �� bytes long� The following commands must be well

understood by a SCSI driver developer�

REQUEST SENSE

Whenever a command returns a CHECK CONDITION status� the high�level

Linux SCSI code automatically obtains more information about the error

by executing the REQUEST SENSE� This command returns a sense key

and a sense code �called the �additional sense code�� or ASC� in the SCSI��

standard �!�� Some SCSI devices may also report an �additional sense code

quali�er� �ASCQ�� The �� possible sense keys are described in Table ����

For information on the ASC and ASCQ� please refer to the SCSI standard

 �! or to a SCSI device technical manual�

Sense Key Description

�x�� NO SENSE

�x�� RECOVERED ERROR

�x�� NOT READY

�x�� MEDIUM ERROR

�x�� HARDWARE ERROR

�x�� ILLEGAL REQUEST

�x�� UNIT ATTENTION

�x�� DATA PROTECT

�x�� BLANK CHECK

�x�� �Vendor speci�c error�

�x�a COPY ABORTED

�x�b ABORTED COMMAND

�x�c EQUAL

�x�d VOLUME OVERFLOW

�x�e MISCOMPARE

�x�f RESERVED

Table ���
 Sense Key Descriptions

��
� Writing a SCSI Device Driver

TEST UNIT READY

This command is used to test the target�s status� If the target can accept a

medium�access command �e�g�� a READ or a WRITE�� the command returns

with a GOOD status� Otherwise� the command returns with a CHECK

CONDITION status and a sense key of NOT READY� This response usually

indicates that the target is completing power�on self�tests�

INQUIRY This command returns the target�s make� model� and device type� The high�

level Linux code uses this command to di�erentiate among magnetic disks�

optical disks� and tape drives �the high�level code currently does not support

printers� processors� or juke boxes��

READ and WRITE

These commands are used to transfer data from and to the target� You

should be sure your driver can support simpler commands� such as TEST

UNIT READY and INQUIRY� before attempting to use the READ and

WRITE commands�

����� Getting Started

The author of a low�level device driver will need to have an understanding of how inter�

ruptions are handled by the kernel� At minimum� the kernel functions that disable �cli���

and enable �sti��� interruptions should be understood� The scheduling functions �e�g��

schedule��� sleepon��� and wakeup��� may also be needed by some drivers� A detailed

explanation of these functions can be found in section ����

����� Before You Begin� Gathering Tools

Before you begin to write a SCSI driver for Linux� you will need to obtain several resources�

The most important is a bootable Linux system�preferably one which boots from an

IDE� RLL� or MFM hard disk� During the development of your new SCSI driver� you will

rebuild the kernel and reboot your system many times� Programming errors may result

in the destruction of data on your SCSI drive and on your non�SCSI drive� Back up your

system before you begin�

The installed Linux system can be quite minimal
 the GCC compiler distribution �in�

cluding libraries and the binary utilities�� an editor� and the kernel source are all you need�

Additional tools like od� hexdump� and less will be quite helpful� All of these tools will �t

��
� Writing a SCSI Device Driver
	

on an inexpensive ����� MB hard disk���

Documentation is essential� At minimum� you will need a technical manual for your host

adapter� Since Linux is freely distributable� and since you �ideally� want to distribute your

source code freely� avoid non�disclosure agreements �NDA�� Most NDA�s will prohibit you

from releasing your source code�you might be allowed to release an object �le containing

your driver� but this is simply not acceptable in the Linux community at this time�

A manual that explains the SCSI standard will be helpful� Usually the technical manual

for your disk drive will be su�cient� but a copy of the SCSI standard will often be helpful��

Before you start� make hard copies of hosts�h� scsi�h� and one of the existing drivers

in the Linux kernel� These will prove to be useful references while you write your driver�

����	 The Linux SCSI Interface

The high�level SCSI interface in the Linux kernel manages all of the interaction between

the kernel and the low�level SCSI device driver� Because of this layered design� a low�level

SCSI driver need only provide a few basic services to the high�level code� The author of a

low�level driver does not need to understand the intricacies of the kernel I�O system and�

hence� can write a low�level driver in a relatively short amount of time�

Two main structures �Scsi�Host and Scsi�Cmnd� are used to communicate between the

high�level code and the low�level code� The next two sections provide detailed information

about these structures and the requirements of the low�level driver�

����� The Scsi Host Structure

The Scsi�Host structure serves to describe the low�level driver to the high�level code�

Usually� this description is placed in the device driver�s header �le in a C preprocessor

de�nition� as shown in Figure ����

The Scsi�Host structure is presented in Figure ���� Each of the �elds will be explained

in detail later in this section�

�A used �
 MB MFM hard disk and controller should cost less than US��

�
�The October ��� ����� draft of the SCSI�� standard document is available via anonymous ftp from

sunsite�unc�edu in �pub�Linux�development�scsi���tar�Z� and is available for purchase from Global

Engineering Documents ���
� McGaw� Irvine� CA ������� ��

���������� or ��������������� Please refer

to document X���������X� In early ����� the manual cost US��
��
�

��
� Writing a SCSI Device Driver
�

	define FDOMAIN���X� � �Future Domain TMC���x���

fdomain���x��detect�

fdomain���x��info�

fdomain���x��command�

fdomain���x��queue�

fdomain���x��abort�

fdomain���x��reset�

NULL�

fdomain���x��biosparam�

�� �� ��� � ��� �!

	endif

Figure ���
 Device Driver Header File

typedef struct

�

char �name�

int �� detect��int��

const char ��� info��void��

int �� queuecommand��Scsi�Cmnd ��

void ��done��Scsi�Cmnd ����

int �� command��Scsi�Cmnd ���

int �� abort��Scsi�Cmnd �� int��

int �� reset��void��

int �� slave�attach��int� int��

int �� bios�param��int� int� int
���

int can�queue�

int this�id�

short unsigned int sg�tablesize�

short cmd�per�lun�

unsigned present���

unsigned unchecked�isa�dma���

! Scsi�Host�

Figure ���
 The Scsi Host Structure

��
� Writing a SCSI Device Driver
�

��
�
�� Variables in the Scsi Host structure

In general� the variables in the Scsi�Host structure are not used until after the detect��

function �see section ���������� is called� Therefore� any variables which cannot be assigned

before host adapter detection should be assigned during detection� This situation might

occur� for example� if a single driver provided support for several host adapters with very

similar characteristics� Some of the parameters in the Scsi�Host structure might then

depend on the speci�c host adapter detected�

��
�
���� name

name holds a pointer to a short description of the SCSI host adapter�

��
�
���
 can queue

can�queue holds the number of outstanding commands the host adapter can process� Unless

RESELECTION is supported by the driver and the driver is interrupt�driven�	 this variable

should be set to ��

��
�
���� this id

Most host adapters have a speci�c SCSI ID assigned to them� This SCSI ID� usually � or

�� is used for RESELECTION� The this�id variable holds the host adapter�s SCSI ID� If

the host adapter does not have an assigned SCSI ID� this variable should be set to �� �in

this case� RESELECTION cannot be supported��

��
�
���	 sg tablesize

The high�level code supports �scatter�gather�� a method of increasing SCSI throughput by

combining many small SCSI requests into a few large SCSI requests� Since most SCSI disk

drives are formatted with �
� interleave��
 the time required to perform the SCSI ARBI�

TRATION and SELECTION phases is longer than the rotational latency time between

sectors��� Therefore� only one SCSI request can be processed per disk revolution� result�

	Some of the early Linux drivers were not interrupt driven and� consequently� had very poor performance�
�
	��� interleave
 means that all of the sectors in a single track appear consecutively on the disk surface�
��This may be an over�simpli�cation� On older devices� the actual command processing can be signi�cant�

Further� there is a great deal of layered overhead in the kernel� the high�level SCSI code� the bu�ering code�

and the �le�system code all contribute to poor SCSI performance�

��
� Writing a SCSI Device Driver
�

ing in a throughput of about 	� kilobytes per second� When scatter�gather is supported�

however� average throughput is usually over 	�� kilobytes per second�

The sg�tablesize variable holds the maximum allowable number of requests in the

scatter�gather list� If the driver does not support scatter�gather� this variable should be

set to SG�NONE� If the driver can support an unlimited number of grouped requests� this

variable should be set to SG�ALL� Some drivers will use the host adapter to manage the

scatter�gather list and may need to limit sg�tablesize to the number that the host adapter

hardware supports� For example� some Adaptec host adapters require a limit of ���

��
�
���� cmd per lun

The SCSI standard supports the notion of �linked commands�� Linked commands allow

several commands to be queued consecutively to a single SCSI device� The cmd�per�lun

variable speci�es the number of linked commands allowed� This variable should be set to �

if command linking is not supported� At this time� however� the high�level SCSI code will

not take advantage of this feature�

Linked commands are fundamentally di�erent from multiple outstanding commands �as

described by the can�queue variable�� Linked commands always go to the same SCSI target

and do not necessarily involve a RESELECTION phase� Further� linked commands elim�

inate the ARBITRATION� SELECTION� and MESSAGE OUT phases on all commands

after the �rst one in the set� In contrast� multiple outstanding commands may be sent to an

arbitrary SCSI target� and require the ARBITRATION� SELECTION� MESSAGE OUT�

and RESELECTION phases�

��
�
���� present

The present bit is set �by the high�level code� if the host adapter is detected�

��
�
���
 unchecked isa dma

Some host adapters use Direct Memory Access �DMA� to read and write blocks of data

directly from or to the computer�s main memory� Linux is a virtual memory operating

system that can use more than �� MB of physical memory� Unfortunately� on machines

using the ISA bus��� DMA is limited to the low �� MB of physical memory�

��The so�called 	Industry Standard Architecture
 bus was introduced with the IBM PC�XT and IBM

PC�AT computers�

��
� Writing a SCSI Device Driver
�

If the unchecked�isa�dma bit is set� the high�level code will provide data bu�ers which

are guaranteed to be in the low �� MB of the physical address space� Drivers written for

host adapters that do not use DMA should set this bit to zero� Drivers speci�c to EISA

bus�� machines should also set this bit to zero� since EISA bus machines allow unrestricted

DMA access�

��
�
�
 Functions in the Scsi Host Structure

��
�
�
�� detect��

The detect�� function�s only argument is the �host number�� an index into the scsi�hosts

variable �an array of type struct Scsi�Host�� The detect�� function should return a non�

zero value if the host adapter is detected� and should return zero otherwise�

Host adapter detection must be done carefully� Usually the process begins by looking

in the ROM area for the �BIOS signature� of the host adapter� On PC�AT�compatible

computers� the use of the address space between �xc���� and �xfffff is fairly well de�

�ned� For example� the video BIOS on most machines starts at �xc���� and the hard disk

BIOS� if present� starts at �xc����� When a PC�AT�compatible computer boots� every

��kilobyte block from �xc���� to �xf���� is examined for the ��byte signature ��x��aa�

which indicates that a valid BIOS extension is present �!�

The BIOS signature usually consists of a series of bytes that uniquely identi�es the

BIOS� For example� one Future Domain BIOS signature is the string

FUTURE DOMAIN CORP� �C� ��������� �����V����������

found exactly �ve bytes from the start of the BIOS block�

After the BIOS signature is found� it is safe to test for the presence of a functioning host

adapter in more speci�c ways� Since the BIOS signatures are hard�coded in the kernel� the

release of a new BIOS can cause the driver to mysteriously fail� Further� people who use

the SCSI adapter exclusively for Linux may want to disable the BIOS to speed boot time�

For these reasons� if the adapter can be detected safely without examining the BIOS� then

that alternative method should be used�

Usually� each host adapter has a series of I�O port addresses which are used for commu�

nications� Sometimes these addresses will be hard coded into the driver� forcing all Linux

users who have this host adapter to use a speci�c set of I�O port addresses� Other drivers

��The 	Extended Industry Standard Architecture
 bus is a non�proprietary ���bit bus for ��� and i���

machines�

��
� Writing a SCSI Device Driver 	�

are more �exible� and �nd the current I�O port address by scanning all possible port ad�

dresses� Usually each host adapter will allow � or
 sets of addresses� which are selectable

via hardware jumpers on the host adapter card�

After the I�O port addresses are found� the host adapter can be interrogated to con�rm

that it is� indeed� the expected host adapter� These tests are host adapter speci�c� but

commonly include methods to determine the BIOS base address �which can then be com�

pared to the BIOS address found during the BIOS signature search� or to verify a unique

identi�cation number associated with the board� For MCA bus�� machines� each type of

board is given a unique identi�cation number which no other manufacturer can use�several

Future Domain host adapters� for example� also use this number as a unique identi�er on

ISA bus machines� Other methods of verifying the host adapter existence and function will

be available to the programmer�

��
�
�
���� Requesting the IRQ

After detection� the detect�� routine must request any needed interrupt or DMA channels

from the kernel� There are �� interrupt channels� labeled IRQ � through IRQ �	� The kernel

provides two methods for setting up an IRQ handler
 irqaction�� and request�irq���

The request�irq�� function takes two parameters� the IRQ number and a pointer to

the handler routine� It then sets up a default sigaction structure and calls irqaction���

The code�� for the request�irq�� function is shown in Figure ���� I will limit my discussion

to the more general irqaction�� function�

The declaration�� for the irqaction�� function is

int irqaction� unsigned int irq� struct sigaction �new �

where the �rst parameter� irq� is the number of the IRQ that is being requested� and the

second parameter� new� is a structure with the de�nition�� shown in Figure ��
�

In this structure� sa�handler should point to your interrupt handler routine� which

should have a de�nition similar to the following

void fdomain���x��intr� int irq �

��The 	Micro�Channel Architecture
 bus is IBM�s proprietary �� bit bus for ��� and i��� machines�
��
Linux
����� kernel source code� linux�kernel�irq�c

��
Linux
����� kernel source code� linux�kernel�irq�c

��
Linux
����� kernel source code� linux�include�linux�signal�h

��
� Writing a SCSI Device Driver 	�

int request�irq� unsigned int irq� void ��handler�� int � �

�

struct sigaction sa�

sa�sa�handler � handler�

sa�sa�flags � ��

sa�sa�mask � ��

sa�sa�restorer � NULL�

return irqaction� irq� �sa ��

!

Figure ���
 The request irq�� Function

struct sigaction

�

��sighandler�t sa�handler�

sigset�t sa�mask�

int sa�flags�

void ��sa�restorer��void��

!�

Figure ��

 The sigaction Structure

��
� Writing a SCSI Device Driver 	�

where irq will be the number of the IRQ which caused the interrupt handler routine to be

invoked�

The sa�mask variable is used as an internal �ag by the irqaction�� routine� Tradi�

tionally� this variable is set to zero prior to calling irqaction���

The sa�flags variable can be set to zero or to SA�INTERRUPT� If zero is selected� the

interrupt handler will run with other interrupts enabled� and will return via the signal�

handling return functions� This option is recommended for relatively slow IRQ�s� such as

those associated with the keyboard and timer interrupts� If SA�INTERRUPT is selected� the

handler will be called with interrupts disabled and return will avoid the signal�handling

return functions� SA�INTERRUPT selects �fast� IRQ handler invocation routines� and is

recommended for interrupt driven hard disk routines� The interrupt handler should turn

interrupts on as soon as possible� however� so that other interrupts can be processed�

The sa�restorer variable is not currently used� and is traditionally set to NULL�

The request�irq�� and irqaction�� functions will return zero if the IRQ was suc�

cessfully assigned to the speci�ed interrupt handler routine� Non�zero result codes may be

interpreted as follows

�EINVAL Either the IRQ requested was larger than �	� or a NULL pointer was passed

instead of a valid pointer to the interrupt handler routine�

�EBUSY The IRQ requested has already been allocated to another interrupt han�

dler� This situation should never occur� and is reasonable cause for a call to

panic���

The kernel uses an Intel �interrupt gate� to set up IRQ handler routines requested via

the irqaction�� function� The Intel i
�� manual �� p� ����! explains the interrupt gate

as follows

Interrupts using� � � interrupt gates� � �cause the TF �ag trap �ag! to be cleared

after its current value is saved on the stack as part of the saved contents of the

EFLAGS register� In so doing� the processor prevents instruction tracing from

a�ecting interrupt response� A subsequent IRET interrupt return! instruction

restores the TF �ag to the value in the saved contents of the EFLAGS register

on the stack�

� � � An interrupt which uses an interrupt gate clears the IF �ag interrupt�

enable �ag!� which prevents other interrupts from interfering with the current

interrupt handler� A subsequent IRET instruction restores the IF �ag to the

value in the saved contents of the EFLAGS register on the stack�

��
� Writing a SCSI Device Driver 	�

��
�
�
�
 Requesting the DMA channel

Some SCSI host adapters use DMA to access large blocks of data in memory� Since the

CPU does not have to deal with the individual DMA requests� data transfers are faster

than CPU�mediated transfers and allow the CPU to do other useful work during a block

transfer �assuming interrupts are enabled��

The host adapter will use a speci�c DMA channel� This DMA channel will be determined

by the detect�� function and requested from the kernel with the request�dma�� function�

This function takes the DMA channel number as its only parameter and returns zero if the

DMA channel was successfully allocated� Non�zero results may be interpreted as follows

�EINVAL The DMA channel number requested was larger than ��

�EBUSY The requested DMA channel has already been allocated� This is a very

serious situation� and will probably cause any SCSI requests to fail� It is

worthy of a call to panic���

��
�
�
�� info��

The info�� function merely returns a pointer to a static area containing a brief description

of the low�level driver� This description� which is similar to that pointed to by the name

variable� will be printed at boot time�

��
�
�
�	 queuecommand��

The queuecommand�� function sets up the host adapter for processing a SCSI command

and then returns� When the command is �nished� the done�� function is called with

the Scsi�Cmnd structure pointer as a parameter� This allows the SCSI command to be

executed in an interrupt�driven fashion� Before returning� the queuecommand�� function

must do several things

�� Save the pointer to the Scsi�Cmnd structure�

�� Save the pointer to the done�� function in the scsi�done�� function pointer in the

Scsi�Cmnd structure� See section ��������	 for more information�

�� Set up the special Scsi�Cmnd variables required by the driver� See section ����� for

detailed information on the Scsi�Cmnd structure�

��
� Writing a SCSI Device Driver 	

� Start the SCSI command� For an advanced host adapter� this may be as simple as

sending the command to a host adapter �mailbox�� For less advanced host adapters�

the ARBITRATION phase is manually started�

The queuecommand�� function is called only if the can�queue variable �see section ����������

is non�zero� Otherwise the command�� function is used for all SCSI requests� The queuecommand��

function should return zero on success �the current high�level SCSI code presently ignores

the return value��

��
�
�
�� done��

The done�� function is called after the SCSI command completes� The single parameter

that this command requires is a pointer to the same Scsi�Cmnd structure that was previously

passed to the queuecommand�� function� Before the done�� function is called� the result

variable must be set correctly� The result variable is a �� bit integer� each byte of which

has speci�c meaning

Byte � �LSB� This byte contains the SCSI STATUS code for the command� as described

in section ��������

Byte � This byte contains the SCSI MESSAGE� as described in section ��������

Byte � This byte holds the host adapter�s return code� The valid codes for this byte

are given in scsi�h and are described below

DID OK No error�

DID NO CONNECT

SCSI SELECTION failed because there was no device at the

address speci�ed�

DID BUS BUSY

SCSI ARBITRATION failed�

DID TIME OUT

A time�out occurred for some unknown reason� probably dur�

ing SELECTION or while waiting for RESELECTION�

DID BAD TARGET

The SCSI ID of the target was the same as the SCSI ID of

the host adapter�

��
� Writing a SCSI Device Driver 		

DID ABORT The high�level code called the low�level abort�� function �see

section �����������

DID PARITY A SCSI PARITY error was detected�

DID ERROR An error occurred which lacks a more appropriate error code

�for example� an internal host adapter error��

DID RESET The high�level code called the low�level reset�� function �see

section �����������

DID BAD INTR

An unexpected interrupt occurred and there is no appropri�

ate way to handle this interrupt�

Note that returning DID�BUS�BUSY will force the command to be retried�

whereas returning DID�NO�CONNECT will abort the command�

Byte � �MSB�

This byte is for a high�level return code� and should be left as zero by the

low�level code�

Current low�level drivers do not uniformly �or correctly� implement error reporting� so

it may be better to consult scsi�c to determine exactly how errors should be reported�

rather than exploring existing drivers�

��
�
�
�� command��

The command�� function processes a SCSI command and returns when the command is

�nished� When the original SCSI code was written� interrupt�driven drivers were not sup�

ported� The old drivers are much less e�cient �in terms of response time and latency� than

the current interrupt�driven drivers� but are also much easier to write� For new drivers� this

command can be replaced with a call to the queuecommand�� function� as demonstrated in

Figure ��	���

The return value is the same as the result variable in the Scsi�Cmnd structure� Please

see sections ��������	 and ����� for more details�

��
Linux
����� kernel� linux�kernel�blk drv�scsi�aha�	
��c� written by Tommy Thorn�

��
� Writing a SCSI Device Driver 	�

static volatile int internal�done�flag � ��

static volatile int internal�done�errcode � ��

static void internal�done� Scsi�Cmnd �SCpnt �

�

internal�done�errcode � SCpnt��result�

""internal�done�flag�

!

int aha�����command� Scsi�Cmnd �SCpnt �

�

aha�����queuecommand� SCpnt� internal�done ��

while ��internal�done�flag��

internal�done�flag � ��

return internal�done�errcode�

!

Figure ��	
 Example command�� Function

��
� Writing a SCSI Device Driver 	�

��
�
�
�
 abort��

The high�level SCSI code handles all timeouts� This frees the low�level driver from having

to do timing� and permits di�erent timeout periods to be used for di�erent devices �e�g��

the timeout for a SCSI tape drive is nearly in�nite� whereas the timeout for a SCSI disk

drive is relatively short��

The abort�� function is used to request that the currently outstanding SCSI command�

indicated by the Scsi�Cmnd pointer� be aborted� After setting the result variable in the

Scsi�Cmnd structure� the abort�� function returns zero� If code� the second parameter to

the abort�� function� is zero� then result should be set to DID�ABORT� Otherwise� result

shoudl be set equal to code� If code is not zero� it is usually DID�TIME�OUT or DID�RESET�

Currently� none of the low�level drivers is able to correctly abort a SCSI command� The

initiator should request �by asserting the �ATN line� that the target enter a MESSAGE OUT

phase� Then� the initiator should send an ABORT message to the target�

��
�
�
�� reset��

The reset�� function is used to reset the SCSI bus� After a SCSI bus reset� any executing

command should fail with a DID�RESET result code �see section ��������	��

Currently� none of the low�level drivers handles resets correctly� To correctly reset a

SCSI command� the initiator should request �by asserting the �ATN line� that the target

enter a MESSAGE OUT phase� Then� the initiator should send a BUS DEVICE RESET

message to the target� It may also be necessary to initiate a SCSI RESET by asserting the

�RST line� which will cause all target devices to be reset� After a reset� it may be necessary

to renegotiate a synchronous communications protocol with the targets�

��
�
�
�� slave attach��

The slave attach�� function is not currently implemented� This function would be used

to negotiate synchronous communications between the host adapter and the target drive�

This negotiation requires an exchange of a pair of SYNCHRONOUS DATA TRANSFER

REQUEST messages between the initiator and the target� This exchange should occur

under the following conditions �!

A SCSI device that supports synchronous data transfer recognizes it has

not communicated with the other SCSI device since receiving the last �hard�

RESET�

��
� Writing a SCSI Device Driver 	�

A SCSI device that supports synchronous data transfer recognizes it has

not communicated with the other SCSI device since receiving a BUS DEVICE

RESET message�

��
�
�
��� bios param��

Linux supports the MS�DOS�	 hard disk partitioning system� Each disk contains a �par�

tition table� which de�nes how the disk is divided into logical sections� Interpretation of

this partition table requires information about the size of the disk in terms of cylinders�

heads� and sectors per cylinder� SCSI disks� however� hide their physical geometry and are

accessed logically as a contiguous list of sectors� Therefore� in order to be compatible with

MS�DOS� the SCSI host adapter will �lie� about its geometry� The physical geometry of

the SCSI disk� while available� is seldom used as the �logical geometry�� �The reasons for

this involve archaic and arbitrary limitations imposed by MS�DOS��

Linux needs to determine the �logical geometry� so that it can correctly modify and

interpret the partition table� Unfortunately� there is no standard method for converting

between physical and logical geometry� Hence� the bios param�� function was introduced

in an attempt to provide access to the host adapter geometry information�

The size parameter is the size of the disk in sectors� Some host adapters use a deter�

ministic formula based on this number to calculate the logical geometry of the drive� Other

host adapters store geometry information in tables which the driver can access� To facilitate

this access� the dev parameter contains the drive�s device number� Two macros are de�ned

in linux�fs�h which will help to interpret this value
 MAJOR�dev� is the device�s major

number� and MINOR�dev� is the device�s minor number� These are the same major and

minor device numbers used by the standard Linux mknod command to create the device

in the �dev directory� The info parameter points to an array of three integers that the

bios�param�� function will �ll in before returning

info
�� Number of heads

info
�� Number of sectors per cylinder

info
�� Number of cylinders

The information in info is not the physical geometry of the drive� but only a logical

geometry that is identical to the logical geometry used by MS�DOS to access the drive� The

distinction between physical and logical geometry cannot be overstressed�

�	MS�DOS is a registered trademark of Microsoft Corporation�

��
� Writing a SCSI Device Driver 	�

����
 The Scsi Cmnd Structure

The Scsi�Cmnd structure��
 as shown in Figure ���� is used by the high�level code to specify

a SCSI command for execution by the low�level code� Many variables in the Scsi�Cmnd

structure can be ignored by the low�level device driver�other variables� however� are ex�

tremely important�

��
���� Reserved Areas

��
������ Informative Variables

host is an index into the scsi�hosts array�

target stores the SCSI ID of the target of the SCSI command� This information is im�

portant if multiple outstanding commands or multiple commands per target are supported�

cmnd is an array of bytes which hold the actual SCSI command� These bytes should

be sent to the SCSI target during the COMMAND phase� cmnd
�� is the SCSI command

code� The COMMAND�SIZE macro� de�ned in scsi�h� can be used to determine the length of

the current SCSI command�

result is used to store the result code from the SCSI request� Please see section ��������	

for more information about this variable� This variable must be correctly set before the

low�level routines return�

��
�����
 The Scatter�Gather List

use�sg contains a count of the number of pieces in the scatter�gather chain� If use�sg is

zero� then request�buffer points to the data bu�er for the SCSI command� and request�bufflen

is the length of this bu�er in bytes� Otherwise� request�buffer points to an array of

scatterlist structures� and use�sg will indicate how many such structures are in the

array� The use of request�buffer is non�intuitive and confusing�

Each element of the scatterlist array contains an address and a length component�

If the unchecked�isa�dma �ag in the Scsi�Host structure is set to � �see section ���������

for more information on DMA transfers�� the address is guaranteed to be within the �rst

�� MB of physical memory� Large amounts of data will be processed by a single SCSI

command� The length of these data will be equal to the sum of the lengths of all the bu�ers

pointed to by the scatterlist array�

�

Linux
����� kernel� linux�kernel�blk drv�scsi�scsi�h

��
� Writing a SCSI Device Driver ��

typedef struct scsi�cmnd

�

int host�

unsigned char target�

lun�

index�

struct scsi�cmnd �next�

�prev�

unsigned char cmnd
����

unsigned request�bufflen�

void �request�buffer�

unsigned char data�cmnd
����

unsigned short use�sg�

unsigned short sglist�len�

unsigned bufflen�

void �buffer�

struct request request�

unsigned char sense�buffer
����

int retries�

int allowed�

int timeout�per�command�

timeout�total�

timeout�

unsigned char internal�timeout�

unsigned flags�

void ��scsi�done��struct scsi�cmnd ���

void ��done��struct scsi�cmnd ���

Scsi�Pointer SCp�

unsigned char �host�scribble�

int result�

! Scsi�Cmnd�

Figure ���
 The Scsi Cmnd Structure

��
� Writing a SCSI Device Driver ��

��
���
 Scratch Areas

Depending on the capabilities and requirements of the host adapter� the scatter�gather list

can be handled in a variety of ways� To support multiple methods� several scratch areas

are provided for the exclusive use of the low�level driver�

��
���
�� The scsi done�� Pointer

This pointer should be set to the done�� function pointer in the queuecommand�� function

�see section ��������
 for more information�� There are no other uses for this pointer�

��
���
�
 The host scribble Pointer

The high�level code supplies a pair of memory allocation functions� scsi�malloc�� and

scsi�free��� which are guaranteed to return memory in the �rst �� MB of physical mem�

ory� This memory is� therefore� suitable for use with DMA� The amount of memory allo�

cated per request must be a multiple of 	�� bytes� and must be less than or equal to
���

bytes� The total amount of memory available via scsi�malloc�� is a complex function of

the Scsi�Host structure variables sg�tablesize� cmd�per�lun� and unchecked�isa�dma�

The host�scribble pointer is available to point to a region of memory allocated with

scsi�malloc��� The low�level SCSI driver is responsible for managing this pointer and its

associated memory� and should free the area when it is no longer needed�

��
���
�� The Scsi Pointer Structure

The SCp variable� a structure of type Scsi�Pointer� is described in Figure ���� The vari�

ables in this structure can be used in any way necessary in the low�level driver� Typically�

buffer points to the current entry in the scatterlist� buffers�residual counts the

number of entries remaining in the scatterlist� ptr is used as a pointer into the bu�er�

and this�residual counts the characters remaining in the transfer� Some host adapters

require support of this detail of interaction�others can completely ignore this structure�

The second set of variables provide convenient locations to store SCSI status information

and various pointers and �ags�

���� Acknowledgements ��

typedef struct scsi�pointer

�

char �ptr� �� data pointer ��

int this�residual� �� left in this buffer ��

struct scatterlist �buffer� �� which buffer ��

int buffers�residual� �� how many buffers left ��

volatile int Status�

volatile int Message�

volatile int have�data�in�

volatile int sent�command�

volatile int phase�

! Scsi�Pointer�

Figure ���
 The Scsi Pointer Structure

��� Acknowledgements

Thanks to Drew Eckhardt� Michael K� Johnson� Karin Boes� Devesh Bhatnagar� and Doug

Ho�man for reading early versions of this paper and for providing many helpful comments�

Special thanks to my o�cial COMP���� �Professional Writing in Computer Science� �read�

ers�� Professors Peter Calingaert and Raj Kumar Singh�

��
 Network Device Drivers

�I have not written this section because I don�t know anything about it� I would

appreciate help with this��

Chapter �

The �proc �lesystem

The proc �lesystem is an interface to several kernel data structures which behaves remark�

ably like a �lesystem� Instead of having to read �dev�kmem and have some way of knowing

where things are�� all an application has to do is read �les and directories in �proc� This

way� all the addresses of the kernel data structures are compiled into the proc �lesystem at

kernel compile time� and programs which use the �proc interface need not be recompiled or

updated when the kernel is recompiled� It is possible to mount the proc �lesystem some�

where other than �proc� but that destroys the nice predictablity of the proc �lesystem� so

we will conveniently ignore that option�

��� �proc Directories and Files

�This section should be severly cut� and the full version put in the LPG when

that is available� In the mean time� better here than nowhere��

In �proc� there is a subdirectory for every running process� named by the number of the

process�s pid� These directories will be explained below� There are also several other �les

and directories� These are

self This refers to the process accessing the proc �lesystem� and is identical to

the directory named by the process id of the process doing the look�up�

kmsg This �le can be used instead of the syslog�� system call to log kernel mes�

sages� A process must have superuser priviledges to read this �le� and only

one process should read this �le� This �le should not be read if a syslog

�Usually a �le called a namelist �le� often �etc�psdatabase�

��

��� �proc Directories and Files �

process is running which uses the syslog�� system call facility to log kernel

messages�

loadavg This �le gives an output like this

�!�	 �!�� �!��

These numbers are the numbers normally given by uptime and other com�

mands as the load average�

meminfo This �le is a condensed version of the output from the free program� Its

output looks like this

total� used� free� shared� buffers�

Mem� #��$��$ #	����$ �$�	�� �%	#$�� �&�&%&%

Swap� $����%� ��#��%� %��&���

Notice that the numbers are in bytes� not KB� Linus wrote a version of

free which reads this �le and can return either bytes ��b� or KB ��k� the

default�� This is included with the procps package at tsx����mit�edu and

other places� Also notice that there is not a seperate entry for each swap

�le
 the Swap� line sumarizes all the swap space available to the kernel�

uptime This �le contains two things
 the time that the system has been up� and the

amount of time it has spent in the idle process� Both numbers are given as

decimal quantities� in seconds and hundreths of a second� The two decimal

digits of precision are not guaranteed on all architectures� but are currently

accurate on all working implementations of Linux� due to the convenient

��� Hz clock� This �le looks like this

%��!		 ���!��

In this case� the system has been running for ��
��� seconds� and of that

time� ��	�
	 seconds have been spent in the idle task�

version This �le contains a string identifying the version of Linux that is currently

running� An example is

Linux version �!&&!pl���
johnsonm'roland
 ����%�&	 �$�	&���

net This is a directory containing three �les� all of which give the status of some

part of the Linux networking layer� These �les contain binary structures�

and are therefore not readable with cat� However� the standard netstat suite

uses these �les� The binary structures read from these �les are de�ned in

linux�if��h� The �les are

��� �proc Directories and Files �	

unix �I do not yet have details on the unix interface� These

details will be added later��

arp �I do not yet have details on the arp interface� These

details will be added later��

route �I do not yet have details on the route interface�

These details will be added later��

dev �I do not yet have details on the dev interface� These

details will be added later��

raw �I do not yet have details on the raw interface� These

details will be added later��

tcp �I do not yet have details on the tcp interface� These

details will be added later��

udp �I do not yet have details on the udp interface� These

details will be added later��

Each of the process subdirectories �those with numerical names and the self directory� have

several �les and subdirectories� as well� The �les are

cmdline This holds the complete command line for the process� unless the whole

process has been swapped out� or unless the process is a zombie� In

either of these later cases� there is nothing in this �le
 i�e� a read on this �le

will return as having read � characters� This �le is null�terminated� but not

newline�terminated�

cwd A link to the current working directory of that process� To �nd out the cwd

of process ��� say� you can do this

cd �proc����cwd� pwd

environ This �le contains the environment for the process� There are no newlines

in this �le
 the entries are seperated by null characters� and there is a null

character at the end� Thus� to print out the environment of process ��� you

would do

cat �proc����environ � tr ������ ��n�

This �le is also null�terminated and not newline terminated��

��� �proc Directories and Files ��

exe This is a link to the executable� You can type

�proc����exe

to run another copy of whatever process �� is�

fd This is a subdirectory containing one entry for each �le which the process

has open� named by its �le descripter� and which is a link to the actual �le�

Programs that will take a �lename� but will not take the standard input�

and which write to a �le� but will not send their output to standard output�

can be e�ectively foiled this way� assuming that �i is the �ag designating

an input �le and �o is the �ag designating an output �le

!!! � foobar �i �proc�self�fd�� �o �proc�self�fd�� � !!!

Voil�a� Instant �lter� Note that this will not work for programs that seek on

their �les� as the �les in the fd directory are not seekable�

lib This is a subdirectory containing one entry for each shared library that the

process is using� named by number� starting from �� in the order that they

were intialized by the process� These are links to the library �le�

mem This is not the same as the mem ����� device� despite the fact that it has the

same device numbers� The �dev�mem device is the physical memory before

any address translation is done� but the mem �le here is the memory of the

process that accesses it� This cannot be mmap��ed currently� and will not be

until a general mmap�� is added to the kernel�

root This is a pointer to the root directory of the process� This is useful for

programs that call chroot��� such as ftpd�

stat This �le contains a lot of status information about the process� The �elds�

in order� with their proper scanf�� format speci�ers� are

pid #d The process id�

comm �#s� The �lename of the executable� in parentheses� This is visible

whether or not the executable is swapped out�

state #c One character from the string �RSDZT� where R is running�

S is sleeping in an interruptable wait� D is sleeping in an un�

interruptable wait or swapping� Z is zombie� and T is traced

or stopped �on a signal��

��� �proc Directories and Files ��

ppid #d The pid of the parent�

pgrp #d The pgrp of the process�

session #d The session id of the process�

tty #d The tty the process uses�

tpgid #d The pgrp of the process which currently owns the tty that

the process is connected to�

�ags #u The �ags of the process� Currently� every �ag has the math

bit set� because crt��s checks for math emulation� so this is

not included in the output� This is probably a bug� as not

every process is a compiled c program� The math bit should

be a decimal
� and the traced bit is decimal ���

min �t #u The number of minor faults the process has made� those

which have not required loading a memory page from disk�

cmin �t #u The number of minor faults that the process and its children

have made�

maj �t #u The number of major faults the process has made� those

which have required loading a memory page from disk�

cmaj �t #u The number of major faults that the process and its children

have made�

utime #d The number of ji�es that this process has been scheduled in

user mode�

stime #d The number of ji�es that this process has been scheduled in

kernel mode�

cutime #d The number of ji�es that this proces and its children have

been scheduled in user mode�

cstime #d The number of ji�es that this proces and its children have

been scheduled in kernel mode�

counter #d The current maximum size in ji�es of the process�s next

timeslice� of what is currently left of its current timeslice�

if it is the currently running process�

��� �proc Directories and Files ��

priority #d The standard un�x nice value� plus �fteen� The value is never

negative in the kernel�

timeout #u The time in ji�es of the process�s next timeout�

it real value #u

Something having to do with interval timers� �Document

this��

start time #d Time the process started in ji�es after system boot�

vsize #u Virtual memory size

rss #u Resident Set Size
 number of pages the process has in real

memory� minus � for administrative purposes� This is just the

pages which count towards text� data� or stack space� This

does not include pages which have not been demand�loaded

in� or which are swapped out�

rlim #u Current limit on the size of the process� �Is this correct���

start code #u The address above which program text can run�

end code #u The address below which program text can run�

start stack #u

The address of the start of the stack�

kstk esp #u �I don�t know�

kstk eip #u �I don�t know�

signal #d �Fill this in later�

blocked #d �Fill this in later�

sigignore #d �Fill this in later�

sigcatch #d �Fill this in later�

wchan #u This is the �channel� in which the process is waiting� This

is the address of a system call� and can be looked up in a

namelist if you need a textual name�

statm This �le contains special status information that takes a bit longer to cook

�
� Structure of the �proc �lesystem ��

than the information in stat� and is needed rarely enough that it has been

relegated to a seperate �le� For each �eld in this �le� the proc �lesystem has

to look at each of the �x��� entries in the page directory� and count what

they are doing� Here is a description of these �elds

size #d The total number of pages that the process has mapped in the

virtual memory space� whether they are in physical memory

or not�

resident #d The total number of pages that the process has in physical

memory� This should equal the rss �eld from the stat �le� but

is calculated rather than read from the process structure�

shared #d The total number of pages that the process has that are

shared with at least one other process�

trs #d Text Resident Size
 the total number of text �code� pages

belonging to the process that are present in physical memory�

Does not include shared library pages�

lrs #d Library Resident Size
 the total number of library pages used

by the process that are present in physical memory�

drs #d Data Resident Size
 the total number of data pages belonging

to the process that are present in physical memory� Include

dirty library pages and stack�

dt #d The number of library pages which have been accessed �i�e��

are dirty��

��� Structure of the �proc �lesystem

The proc �lesystem is rather interesting� because none of the �les exist in any real directory

structure� Rather� the proper vfs structures are �lled in with functions which do gigantic

case statements� and in the case of reading a �le� get a page� �ll it in� and put the result in

user memory space�

One of the most interesting parts of the proc �lesystem is the way that the individual

process directories are implemented� Essentially� every process directory has the inode

number of its PID shifted left �� bits into a �� bit number greater than �x����ffff�

Within the process directories� inode numbers are reused� because the upper �� bits of the

��� Programming the �proc �lesystem ��

inode number have been masked o� after choosing the right directory�

Another interesting feature is that unlike in a �real� �lesystem� where there is one

file operations structure for the whole �lesystem� as �le lookup is done� di�erent file operations

structures are assigned to the f ops member of the �le structure passed to those functions�

dynamically changing which functions will be called for directory lookup and �le reading�

�Expand on this section later � right now it is mostly here to remind me to

�nish it� � � �

��� Programming the �proc �lesystem

Unlike in most �lesystems� not all inode numbers in the proc �lesystem are unique� Some

�les are declared in structures like

static struct proc�dir�entry root�dir�� � �

� �����!� ��

� �����!!� ��

� ��#��loadavg� ��

� 	�%��uptime� ��

� ��#��meminfo� ��

� �����kmsg� ��

� %�#��version� ��

� #����self� � �� will change inode " ��

� $����net� �

��

and some �les are dynamically created as the �lesystem is read� All the process directories

�those with numerical names and self� essentially have inode numbers that are the pid

shifted left �� bits� but the �les within those directories re�use low ��#�� or so� inode

numbers� which are added at runtime to the pid of the process� This is done in inode�c by

careful re�assignment of inode operation structures�

Other directories� such as �proc�net�� have their own inode numbers� For instance� the

net directory itself has inode number �� The �les within that directory use inode numbers

from the range ���#���� and those are uniquely identi�ed in inode�c and the �les given the

proper permissions when looked up and read�

Adding a �le is relatively simple� and is left as an exersize for the reader� Adding a new

directory is a little bit harder� Assuming that it is not a dynamically allocated directory

like the process directories� here are the steps
�

�Unless you are making a subdirectory of the replicating� dynamically allocated process directory� you

would have to create a new �lesystem type� similar to the proc �lesystem in design� Subdirectories of the

��� Programming the �proc �lesystem ��

�� Choose a unique range of inode numbers� giving yourself a reasonable amount of

room for expansion� Then� right before the line

if
�pid
 � �� not a process directory but in �proc� ��

add a section that looks like this

if

ino �� ��$
 ��
ino �� �%�

 � �� files withing �proc�net ��

inode��i�mode � S�IFREG � �����

inode��i�op � �proc�net�inode�operations�

return�

�

but modify it to to do what you want� For instance� perhaps you have a range of

���#�	�� and some �les� inodes ���� ���� and ���� and some directories� which are

inodes ��
 and ��	� You also have a �le that is readable only by root� inode ����

Your example might look like this

if

ino �� ���
 ��
ino �� ��%

 � �� files withing �proc�foo ��

switch
ino
 �

case ����

case ����

inode��i�mode � S�IFDIR � �����

inode��i�op � �proc�foo�inode�operations�

break�

case ��%�

inode��i�mode � S�IFREG � �����

inode��i�op � �proc�foo�inode�operations�

break�

default�

inode��i�mode � S�IFREG � �����

inode��i�op � �proc�foo�inode�operations�

break�

�

return�

�

�� Find the de�nition of the �les� If your �les will go in a subdirectory of �proc� for

instance� you will look in root�c� and �nd the following

process directories are supported by the mechanism which dynamically creates the process directories� I

suggest going through this explanation of how to add a non�dynamically�allocated directory� understand

it� and then read the code for the process subdirectories� if you wish to add subdirectories to the process

subdirectories�

��� Programming the �proc �lesystem ��

static struct proc�dir�entry root�dir�� � �

� �����!� ��

� �����!!� ��

� ��#��loadavg� ��

� 	�%��uptime� ��

� ��#��meminfo� ��

� �����kmsg� ��

� %�#��version� ��

� #����self� �� �� will change inode " ��

� $����net� �

��

You will then add a new �le to this structure� like this� using the next available inode

number

�!!!�

� %�#��version� ��

� #����self� �� �� will change inode " ��

� $����net� ��

� &�	��foo� �

��

You will then have to provide for this new directory in inode�c� so

if
�pid
 � �� not a process directory but in �proc� ��

inode��i�mode � S�IFREG � �����

inode��i�op � �proc�array�inode�operations�

switch
ino

case ��

inode��i�op � �proc�kmsg�inode�operations�

break�

case $� �� for the net directory ��

inode��i�mode � S�IFDIR � �����

inode��i�op � �proc�net�inode�operations�

break�

default�

break�

return�

�

becomes

if
�pid
 � �� not a process directory but in �proc� ��

inode��i�mode � S�IFREG � �����

inode��i�op � �proc�array�inode�operations�

switch
ino

��� Programming the �proc �lesystem ��

case ��

inode��i�op � �proc�kmsg�inode�operations�

break�

case $� �� for the net directory ��

inode��i�mode � S�IFDIR � �����

inode��i�op � �proc�net�inode�operations�

break�

case &� �� for the foo directory ��

inode��i�mode � S�IFDIR � �����

inode��i�op � �proc�foo�inode�operations�

break�

default�

break�

return�

�

�� You now have to provide for the contents of the �les within the foo directory� Make a

�le called proc�foo�c� following the following model
� �The code in proc lookupfoo��

and proc readfoo�� should be abstracted� as the functionality is used in

more than one place��

��

� linux�fs�proc�foo!c

�

� Copyright
C
 �&&	 Linus Torvalds� Michael K! Johnson� and Your N! Here

�

� proc foo directory handling functions

�

� inode numbers ��� � ��% are reserved for this directory

�
�proc�foo� and its subdirectories

��

"include �asm�segment!h�

"include �linux�errno!h�

"include �linux�sched!h�

"include �linux�proc�fs!h�

"include �linux�stat!h�

static int proc�readfoo
struct inode �� struct file �� struct dirent �� int
�

static int proc�lookupfoo
struct inode ��const char ��int�struct inode ��
�

static int proc�read
struct inode � inode� struct file � file�

char � buf� int count
�

�This �le is availabe as �le proc�foo�c in the The Linux Kernel Hackers� Guide source mentioned on the

copyright page�

��� Programming the �proc �lesystem �

static struct file�operations proc�foo�operations � �

NULL� �� lseek � default ��

proc�read� �� read ��

NULL� �� write � bad ��

proc�readfoo� �� readdir ��

NULL� �� select � default ��

NULL� �� ioctl � default ��

NULL� �� mmap ��

NULL� �� no special open code ��

NULL �� no special release code ��

��

��

� proc directories can do almost nothing!!

��

struct inode�operations proc�foo�inode�operations � �

�proc�foo�operations� �� default foo directory file�ops ��

NULL� �� create ��

proc�lookupfoo� �� lookup ��

NULL� �� link ��

NULL� �� unlink ��

NULL� �� symlink ��

NULL� �� mkdir ��

NULL� �� rmdir ��

NULL� �� mknod ��

NULL� �� rename ��

NULL� �� readlink ��

NULL� �� follow�link ��

NULL� �� bmap ��

NULL� �� truncate ��

NULL �� permission ��

��

static struct proc�dir�entry foo�dir�� � �

� �����!!� ��

� &����!� ��

� ����	��bar� ��

� �������suds� ��

� �������xyzzy� ��

� ��	�	��baz� ��

� �������dir�� ��

� �������dir�� ��

� ��%�$��rootfile� �

��� Programming the �proc �lesystem �	

��

"define NR�FOO�DIRENTRY

sizeof
foo�dir

�
sizeof
foo�dir���

unsigned int get�bar
char � buffer
�

unsigned int get�suds
char � buffer
�

unsigned int get�xyzzy
char � buffer
�

unsigned int get�baz
char � buffer
�

unsigned int get�rootfile
char � buffer
�

static int proc�read
struct inode � inode� struct file � file�

char � buf� int count

�

char � page�

int length�

int end�

unsigned int ino�

if
count � �

return �EINVAL�

page �
char �
 get�free�page
GFP�KERNEL
�

if
�page

return �ENOMEM�

ino � inode��i�ino�

switch
ino
 �

case ����

length � get�bar
page
�

break�

case ����

length � get�suds
page
�

break�

case ����

length � get�xyzzy
page
�

break�

case ��	�

length � get�baz
page
�

break�

case ��%�

length � get�rootfile
page
�

break�

default�

free�page

unsigned long
 page
�

return �EBADF�

��� Programming the �proc �lesystem ��

�

if
file��f�pos �� length
 �

free�page

unsigned long
 page
�

return ��

�

if
count � file��f�pos � length

count � length � file��f�pos�

end � count � file��f�pos�

memcpy�tofs
buf� page � file��f�pos� count
�

free�page

unsigned long
 page
�

file��f�pos � end�

return count�

�

static int proc�lookupfoo
struct inode � dir�const char � name� int len�

struct inode �� result

�

unsigned int pid� ino�

int i�

�result � NULL�

if
�dir

return �ENOENT�

if
�S�ISDIR
dir��i�mode

 �

iput
dir
�

return �ENOENT�

�

ino � dir��i�ino�

i � NR�FOO�DIRENTRY�

while
i�� � � �� �proc�match
len�name�foo�dir�i

�� nothing ���

if
i � �
 �

iput
dir
�

return �ENOENT�

�

if
�
�result � iget
dir��i�sb�ino

 �

iput
dir
�

return �ENOENT�

�

iput
dir
�

return ��

�

��� Programming the �proc �lesystem ��

static int proc�readfoo
struct inode � inode� struct file � filp�

struct dirent � dirent� int count

�

struct proc�dir�entry � de�

unsigned int pid� ino�

int i�j�

if
�inode �� �S�ISDIR
inode��i�mode

return �EBADF�

ino � inode��i�ino�

if

unsigned
 filp��f�pos
 � NR�FOO�DIRENTRY
 �

de � foo�dir � filp��f�pos�

filp��f�pos���

i � de��namelen�

ino � de��low�ino�

put�fs�long
ino� �dirent��d�ino
�

put�fs�word
i��dirent��d�reclen
�

put�fs�byte
��i�dirent��d�name
�

j � i�

while
i��

put�fs�byte
de��name�i�� i�dirent��d�name
�

return j�

�

return ��

�

unsigned int get�foo
char � buffer

�

�� code to find everything goes here ��

return sprintf
buffer� �format string�� variables
�

�

unsigned int get�suds
char � buffer

�

�� code to find everything goes here ��

return sprintf
buffer� �format string�� variables
�

�

��� Programming the �proc �lesystem ��

unsigned int get�xyzzy
char � buffer

�

�� code to find everything goes here ��

return sprintf
buffer� �format string�� variables
�

�

unsigned int get�baz
char � buffer

�

�� code to find everything goes here ��

return sprintf
buffer� �format string�� variables
�

�

unsigned int get�rootfile
char � buffer

�

�� code to find everything goes here ��

return sprintf
buffer� �format string�� variables
�

�

� Filling in the directories dir� and dir� is left as an excersize� In most cases� such

directories will not be needed� However� if they are� the steps presented here may be

applied recursively to add �les to a directory at another level� Notice that I saved

a range of ���#�	� for �proc�foo� and all its subdirectories� so there are plenty of

unused inode numbers in that range for your �les in dir� and dir�� I suggest reserving

a range for each directory� in case you need to expand� Also� I suggest keeping all the

extra data and functions in foo�c� rather than making yet another �le� unless the �les

in the dir� and dir� directories are signi�cantly di�erent in concept than foo�

	� Make the appropriate changes to fs�proc�Make�le� This is also left as an excersize

for the reader�

�Please note� I have made changes similar to these �I wrote the �proc�net�

support�� However� this has been written from memory� and may be uninten�

tionally incomplete� If you notice any inadequacies� please explain them to me

in as complete detail as possible� My email address is johnsonm�sunsite�unc�edu�

Chapter �

How System Calls Work

�This needs to be a little re�worked and expanded upon� but I am waiting to

see if the iBCS stu� makes any impact on it as I write other stu���

This section covers �rst the mechanisms provided by the ��� for handling system calls�

and then shows how Linux uses those mechanisms� This is not a reference to the individual

system calls
 There are very many of them� new ones are added occasionally� and they are

documented in man pages that should be on your Linux system� Well� they are supposed

to be documented and on your Linux system� This is being worked on� �Ideally� this

chapter should be part of another section� I think� Maybe� however� it should

just be expanded� I think it belongs somewhere near the chapter on how to

write a device driver� because it explains how to write a system call��

��� What Does the ��
 Provide�

The ��� recognizes two event classes
 exceptions and interrupts� Both cause a forced context

switch to new a procedure or task� Interrupts can occur at unexpected times during the

execution of a program and are used to respond to signals from hardware� Exceptions are

caused by the execution of instructions�

Two sources of interrupts are recognized by the ���
 Maskable interrupts and Nonmask�

able interrupts� Two sources of exceptions are recognized by the ���
 Processor detected

exceptions and programmed exceptions�

Each interrupt or exception has a number� which is referred to by the ��� literature as the

vector� The NMI interrupt and the processor detected exceptions have been assigned vectors

in the range � through ��� inclusive� The vectors for maskable interrupts are determined

by the hardware� External interrupt controllers put the vector on the bus during the

��

���� What Does the ��� Provide� ��

interrupt�acknowledge cycle� Any vector in the range �� through �		� inclusive� can be

used for maskable interrupts or programmed exceptions� See �gure ��� for a listing of all

the possible interrupts and exceptions� �Check all this out to make sure that it is

right��

� divide error

� debug exception

� NMI interrupt

� Breakpoint

 INTO�detected Over�ow

	 BOUND range exceeded

� Invalid opcode

� coprocessor not available

� double fault

� coprocessor segment overrun

�� invalid task state segment

�� segment not present

�� stack fault

�� general protection

�
 page fault

�	 reserved

�� coprocessor error

��#�� reserved

��#�		 maskable interrupts

Figure ���
 Interrupt and Exception Assignments

HIGHEST Faults except debug faults

Trap instructions INTO� INT n� INT �

Debug traps for this instruction

Debug traps for next instruction

NMI interrupt

LOWEST INTR interrupt

Figure ���
 Priority of simultaneous interrupts and exceptions

��
� How Linux Uses Interrupts and Exceptions ��

��� How Linux Uses Interrupts and Exceptions

Under Linux the execution of a system call is invoked by a maskable interrupt or exception

class transfer� caused by the instruction int �x��� We use vector �x�� to transfer control

to the kernel� which is initialized during system startup�

As of version ������ of Linux� there are ��� system calls� Documentation for many can

be found in the man ��� pages� When a user invokes a system call� execution �ow is as

follows

� Each call is vectored through a stub in libc� Each call within the libc library is

generally a syscallX�� macro� where X is the number of parameters used by the

actual routine� Some system calls are more complex then others because of variable

length argument lists� but even these complex system calls must use the same entry

point
 they just have more parameter setup overhead� Examples of a complex system

call include open�� and ioctl���

� Each syscall macro expands to an assembly routine which sets up the calling stack

frame and calls system call�� through an interrupt� via the instruction int $�x��

For example� the setuid system call is coded as

syscall�
int�setuid�uid t�uid
�

Which will expand to

�setuid�

subl (���exp

pushl �ebx

movzwl ��
�esp
��eax

movl �eax��
�esp

movl (�	��eax

movl �
�esp
��ebx

int (�x$�

movl �eax��edx

testl �edx��edx

jge L�

negl �edx

movl �edx��errno

movl (����eax

popl �ebx

addl (���esp

ret

L��

���� How Linux Initializes the system call vectors ��

movl �edx��eax

popl �ebx

addl (���esp

ret

The macro de�nition for the syscallX��macros can be found in �usr�include�linux�unistd�h�

and the user�space system call library code can be found in �usr�src�libc�syscall�

� At this point no system code for the call has been executed� Not until the int $�x��

is executed does the call transfer to the kernel entry point system call��� This

entry point is the same for all system calls� It is responsible for saving all registers�

checking to make sure a valid system call was invoked and then ultimately transfering

control to the actual system call code via the o�sets in the sys call table� It

is also responsible for calling ret from sys call�� when the system call has been

completed� but before returning to user space�

Actual code for system call entry point can be found in �usr�src�linux�kernel�sys call�S

Actual code for many of the system calls can be found in �usr�src�linux�kernel�sys�c�

and the rest are found elsewhere� find is your friend�

� After the system call has executed� ret from sys call�� is called� It checks to see

if the scheduler should be run� and if so� calls it�

� Upon return from the system call� the syscallX�� macro code checks for a negative

return value� and if there is one� puts a positive copy of the return value in the global

variable errno� so that it can be accessed by code like perror���

��� How Linux Initializes the system call vectors

The startup ���� code found in �usr�src�linux�boot�head�S starts everything o� by calling

setup idt��� This routine sets up an IDT �Interrupt Descriptor Table� with �	� entries�

No interrupt entry points are actually loaded by this routine� as that is done only after

paging has been enabled and the kernel has been moved to �xC�������� An IDT has �	�

entries� each
 bytes long� for a total of ���
 bytes�

When start kernel�� �found in �usr�src�linux�init�main�c� is called it invokes trap init��

�found in �usr�src�linux�kernel�traps�c�� trap init�� sets up the IDT via the macro

set trap gate�� �found in �usr�include�asm�system�h�� trap init�� initializes the in�

terrupt descriptor table as shown in �gure ����

At this point the interrupt vector for the system calls is not set up� It is initialized by

sched init�� �found in �usr�src�linux�kernel�sched�c�� A call to set system gate ��x���

�system call� sets interrupt �x�� to be a vector to the system call�� entry point�

��	� How to Add Your Own System Calls ��

� divide error

� debug

� nmi

� int�

 over�ow

	 bounds

� invalid op

� device not available

� double fault

� coprocessor segment overrun

�� invalid TSS

�� segment not present

�� stack segment

�� general protection

�
 page fault

�	 reserved

�� coprocessor error

�� alignment check

��#
� reserved

Figure ���
 Initialization of interrupts

��� How to Add Your Own System Calls

�� Create a directory under the �usr�src�linux� directory to hold your code�

�� Put any include �les in �usr�include�sys� and �usr�include�linux��

�� Add the relocatable module produced by the link of your new kernel code to the

ARCHIVES and the subdirectory to the SUBDIRS lines of the top level Make�le� See

fs�Make�le� target fs�o for an example�

� Add a 	define NR xx to unistd�h to assign a call number for your system call� where

xx� the index� is something descriptive relating to your system call� It will be used to

set up the vector through sys call table to invoke you code�

	� Add an entry point for your system call to the sys call table in sys�h� It should

match the index �xx� that you assigned in the previous step� The NR syscalls variable

will be recalculated automatically�

��	� How to Add Your Own System Calls �

�� Modify any kernel code in kernel�fs�mm�� etc� to take into account the environment

needed to support your new code�

�� Run make from the top level to produce the new kernel incorporating your new code�

At this point� you will have to either add a syscall to your libraries� or use the proper

syscalln�� macro in your user program for your programs to access the new system call�

The ���DX Microprocessor Programmer�s Reference Manual is a helpful reference� as is

James Turley�s Advanced �	��� Programming Techniques� See the Annotated bibliography

in Appendix A�

Chapter �

Linux Memory Management

�This chapter needs to be made much friendlier� I�d hate to remove detail� but

it needs to be less daunting� Many have told me that this is a daunting chapter�

and it need not be� I�ll re�work it later� In the meantime� please bear with me��

��� Overview

The Linux memory manager implements demand paging with a copy�on�write strategy

relying on the ����s paging support� A process acquires its page tables from its parent

�during a fork��� with the entries marked as read�only or swapped� Then� if the process

tries to write to that memory space� and the page is a copy�on�write page� it is copied� and

the page is marked read�write� An exec�� results in the reading in of a page or so from the

executable� The process then faults in any other pages it needs�

Each process has a page directory which means it can access � KB of page tables pointing

to � MB of
 KB pages which is
 GB of memory� A process� page directory is initialized

during a fork by copy page tables��� The idle process has its page directory initialized

during the initialization sequence�

Each user process has a local descriptor table that contains a code segment and data�

stack segment� These user segments extend from � to � GB ��xc��������� In user space

linear addresses� and logical addresses� are identical�

The kernel code and data segments are priveleged segments de�ned in the global descrip�

�In the �
���� linear address run from
GB to �GB� A linear address points to a particular memory

location within this space� A linear address is not a physical address � it is a virtual address�
�A logical address consists of a selector and an o�set� The selector points to a segment and the o�set

tells how far into that segment the address is located�

�	

	��� Overview ��

tor table and extend from � GB to
 GB� The swapper page directory �swapper page dir

is set up so that logical addresses and physical addresses are identical in kernel space�

The space above � GB appears in a process� page directory as pointers to kernel page

tables� This space is invisible to the process in user mode but the mapping becomes relevant

when privileged mode is entered� for example� to handle a system call�

Supervisor mode is entered within the context of the current process so address trans�

lation occurs with respect to the process� page directory but using kernel segments� This is

identically the mapping produced by using the swapper pg dir and kernel segments as both

page directories use the same page tables in this space� Only task
�� �the idle task� �This

should be documented earlier in this guide� � � �� uses the swapper pg dir directly�

� The user process� segment base � �x��� page dir private to the process�

� user process makes a system call
 segment base��xc������� page dir � same user

page dir�

� swapper pg dir contains a mapping for all physical pages from �xc������� to �xc�������

� end mem� so the �rst ��� entries in swapper pg dir are ��s� and then there are
 or

more that point to kernel page tables�

� The user page directories have the same entries as tt swapper pg dir above ���� The

�rst ��� entries map the user space�

The upshot is that whenever the linear address is above �xc������� everything uses the

same kernel page tables�

The user stack sits at the top of the user data segment and grows down� The kernel

stack is not a pretty data structure or segment that I can point to with a �yon lies the kernel

stack�� A kernel stack frame �a page� is associated with each newly created process and

is used whenever the kernel operates within the context of that process� Bad things would

happen if the kernel stack were to grow below its current stack frame� �Where is the

kernel stack put� I know that there is one for every process� but where is it

stored when it�s not being used��

User pages can be stolen or swapped� A user page is one that is mapped below � GB in

a user page table� This region does not contain page directories or page tables� Only dirty

pages are swapped�

Minor alterations are needed in some places �tests for process memory limits comes to

mind� to provide support for programmer de�ned segments�

�Sometimes called the swapper task� even though it has nothing to do with swapping in the Linux

implementation� for historical reasons

	�
� Physical memory ��

��� Physical memory

Here is a map of physical memory before any user processes are executed� The column on

the left gives the starting address of the item� numbers in italics are approximate� The

column in the middle names the item�s�� The column on the far right gives the relevant

routine or variable name or explains the entry�

	x

				 FREE memory end or high memory

mem map mem init��

inode table inode init��

device data device init��y

�x������ more pg tables paging init��

�x�A���� RESERVED

	x	�				 FREE

low memory start

�x������ kernel code � data

floppy track buffer

bad pg table

bad page

used by page fault handlers to kill pro�

cesses gracefully when out of memory�

�x������ pg� the �rst kernel page table�

�x������ swapper pg dir the kernel page directory�

�x������ null page

ydevice�inits that acquire memory are�main�c�
 profil buffer� con init� psaux init�

rd init� scsi dev init� Note that all memory not marked as FREE is RESERVED

�mem init�� RESERVED pages belong to the kernel and are never freed or swapped�

��� A user process� view of memory

�xc������� The invisible kernel reserved

initial stack

room for stack growth
 pages

�x�������� shared libraries

brk unused

malloc memory

end data uninitialized data

end code initialized data

�x�������� text

	�	� Memory Management data in the process table ��

Both the code segment and data segment extend all the way from �x�� to � GB� Cur�

rently the page fault handler do wp page checks to ensure that a process does not write to

its code space� However� by catching the SEGV signal� it is possible to write to code space�

causing a copy�on�write to occur� The handler do no page ensures that any new pages the

process acquires belong to either the executable� a shared library� the stack� or lie within

the brk value�

A user process can reset its brk value by calling sbrk��� This is what malloc�� does

when it needs to� The text and data portions are allocated on separate pages unless one

chooses the �N compiler option� Shared library load addresses are currently taken from the

shared image itself� The address is between ��	 GB and � GB� except in special cases�

User process Memory Allocation

swappable shareable

a few code pages Y Y

a few data pages Y N�

stack Y N

pg dir N N

code�data page table N N

stack page table N N

task struct N N

kernel stack frame N N

shlib page table N N

a few shlib pages Y Y�

�What do the question marks mean� Do they mean that they might go

either way� or that you are not sure�� The stack� shlibs and data are too far removed

from each other to be spanned by one page table� All kernel page tables are shared by all

processes so they are not in the list� Only dirty pages are swapped� Clean pages are stolen

so the process can read them back in from the executable if it likes� Mostly only clean pages

are shared� A dirty page ends up shared across a fork until the parent or child chooses to

write to it again�

��� Memory Management data in the process table

Here is a summary of some of the data kept in the process table which is used for memory

managment
 �These should be much better documented� We need more details��

� Process memory limits
 ulong start code� end code� end data� brk� start stack�

	��� Memory initialization ��

� Page fault counting
 ulong min flt� maj flt� cmin flt� cmaj flt

� Local descriptor table
 struct desc struct ldt
��� is the local descriptor table for

task�

� rss
 number of resident pages�

� swappable
 if �� then process�s pages will not be swapped�

� kernel stack page
 pointer to page allocated in fork�

� saved kernel stack
 V�� mode stu��

� struct tss

� Stack segments

esp� kernel stack pointer �kernel stack page�

ss� kernel stack segment ��x���

esp� � ss� � esp� � ss� � �

unused privelege levels�

� Segment selectors
 ds � es � fs � gs � ss � �x��� cs � �x�f

All point to segments in the current ldt
��

� cr�
 points to the page directory for this process�

� ldt
 LDT�n� selector for current task�s LDT�

��	 Memory initialization

In start kernel�� �main�c� there are � variables related to memory initialization

memory start starts out at � MB� Updated by device initialization�

memory end end of physical memory
 � MB� �� MB� or whatever�

low memory start end of the kernel code and data that is loaded initially�

Each device init typically takes memory start and returns an updated value if it allocates

space at memory start �by simply grabbing it�� paging init�� initializes the page tables

in the swapper pg dir �starting at �xc�������� to cover all of the physical memory from

memory start to memory end� Actually the �rst
 MB is done in startup �� �head�S��

memory start is incremented if any new page tables are added� The �rst page is zeroed

to trap null pointer references in the kernel�

In sched init�� the ldt and tss descriptors for task
�� are set in the GDT� and

loaded into the TR and LDTR �the only time it�s done explicitly�� A trap gate ��x��� is

	��� Memory initialization ��

set up for system call��� The nested task �ag is turned o� in preparation for entering

user mode� The timer is turned on� The task struct for task
�� appears in its entirety

in
linux�sched�h��

mem map is then constructed by mem init�� to re�ect the current usage of physical pages�

This is the state re�ected in the physical memory map of the previous section�

Then Linux moves into user mode with an iret after pushing the current ss� esp�

etc� Of course the user segments for task
�� are mapped right over the kernel segments so

execution continues exactly where it left o��

task
��

� pg dir � swapper pg dir which means the the only addresses mapped are in the

range � GB to � GB � high memory�

� LDT
�� � user code� base��xc�������� size � �
�K

� LDT
�� � user data� base��xc�������� size � �
�K

The �rst exec�� sets the LDT entries for task
�� to the user values of base � �x��

limit � TASK SIZE � �xc�������� Thereafter� no process sees the kernel segments while

in user mode�

����� Processes and the Memory Manager

Memory�related work done by fork��

� Memory allocation

� � page for the task struct�

� � page for the kernel stack�

� � for the pg dir and some for pg tables �copy page tables�

� Other changes

� ss� set to kernel stack segment ��x��� to be sure�

� esp� set to top of the newly allocated kernel stack page

� cr� set by copy page tables�� to point to newly allocated page directory�

� ldt � LDT�task nr� creates new ldt descriptor�

� descriptors set in gdt for new tss and ldt
��

� The remaining registers are inherited from parent�

	��� Memory initialization ��

The processes end up sharing their code and data segments �although they have separate

local desctriptor tables� the entries point to the same segments�� The stack and data pages

will be copied when the parent or child writes to them �copy�on�write��

Memory�related work done by exec��

� memory allocation

� � page for exec header entire �le for omagic

� � page or more for stack �MAX ARG PAGES�

� clear page tables�� used to remove old pages�

� change ldt�� sets the descriptors in the new LDT
�

� ldt
�� � code base��x��� limit�TASK SIZE

� ldt
�� � data base��x��� limit�TASK SIZE

These segments are DPL��� P��� S��� G��� type�a �code� or � �data�

� Up to MAX ARG PAGES dirty pages of argv and envp are allocated and stashed at the

top of the data segment for the newly created user stack�

� Set the instruction pointer of the caller eip � ex�a entry

� Set the stack pointer of the caller to the stack just created �esp � stack pointer� These

will be popped o� the stack when the caller resumes�

� update memory limits

end code � ex�a text

end data � end code " ex�a data

brk � end data " ex�a bss

Interrupts and traps are handled within the context of the current task� In particular�

the page directory of the current process is used in address translation� The segments�

however� are kernel segments so that all linear addresses point into kernel memory� For

example� assume a user process invokes a system call and the kernel wants to access a

variable at address �x��� The linear address is �xc������� �using kernel segments� and the

physical address is �x��� The later is because the process� page directory maps this range

exactly as page pg dir�

The kernel space ��xc������� � high memory� is mapped by the kernel page tables

which are themselves part of the RESERVED memory� They are therefore shared by all

processes� During a fork copy page tables�� treats RESERVED page tables di�erently�

	��� Acquiring and Freeing Memory� Paging Policy ��

It sets pointers in the process page directories to point to kernel page tables and does not

actually allocate new page tables as it does normally� As an example the kernel stack page

�which sits somewhere in the kernel space� does not need an associated page table allocated

in the process� pg dir to map it�

The interrupt instruction sets the stack pointer and stack segment from the privilege �

values saved in the tss of the current task� Note that the kernel stack is a really fragmented

object � it�s not a single object� but rather a bunch of stack frames each allocated when a

process is created� and released when it exits� The kernel stack should never grow so rapidly

within a process context that it extends below the current frame�

��
 Acquiring and Freeing Memory� Paging Policy

When any kernel routine wants memory it ends up calling get free page��� This is at a

lower level than kmalloc�� �in fact kmalloc�� uses get free page�� when it needs more

memory��

get free page�� takes one parameter� a priority� Possible values are GFP BUFFER�

GFP KERNEL� and GFP ATOMIC� It takes a page o� of the free page list� updates mem map�

zeroes the page and returns the physical address of the page �note that kmalloc�� returns

a physical address� The logic of the mm depends on the identity map between logical and

physical addresses��

That itself is simple enough� The problem� of course� is that the free page list may

be empty� If you did not request an atomic operation� at this stage� you enter into the realm

of page stealing which we�ll go into in a moment� As a last resort �and for atomic requests�

a page is torn o� from the secondary page list �as you may have guessed� when pages

are freed� the secondary page list gets �lled up �rst��

The actual manipulation of the page lists and mem map occurs in this mysterious macro

called REMOVE FROM MEM QUEUE�� which you probably never want to look into� Su�ce it to

say that interrupts are disabled� �I think that this should be explained here� It is

not that hard� � � �

Now back to the page stealing bit� get free page�� calls try to free page�� which

repeatedly calls shrink buffers�� and swap out�� in that order until it is successful in

freeing a page� The priority is increased on each successive iteration so that these two

routines run through their page stealing loops more often�

Here�s one run through swap out��

� Run through the process table and get a swappable task say Q�

	��� Acquiring and Freeing Memory� Paging Policy ��

� Find a user page table �not RESERVED� in Q�s space�

� For each page in the table try to swap out� page ��

� Quit when a page is freed�

Note that swap out�� �called by try to free page��� maintains static variables so it may

resume the search where it left o� on the previous call�

try to swap out�� scans the page tables of all user processes and enforces the stealing

policy

�� Do not �ddle with RESERVED pages�

�� Age the page if it is marked accessed �� bit��

�� Don�t tamper with recently acquired pages �last free pages
���

� Leave dirty pages with map counts � � alone�

	� Decrement the map count of clean pages�

�� Free clean pages if they are unmapped�

�� Swap dirty pages with a map count of ��

Of these actions� � and � will stop the process as they result in the actual freeing of a

physical page� Action 	 results in one of the processes losing an unshared clean page that

was not accessed recently �decrement Q��rss� which is not all that bad� but the cumulative

e�ects of a few iterations can slow down a process considerably� At present� there are �

iterations� so a page shared by � processes can get stolen if it is clean�

Page table entries are updated and the TLB invalidated� �Wonder about the lat�

ter� It seems unnecessary since accessed pages aren�t o�ed and there is a walk

through many page tables between iterations � � �may be in case an interrupt

came along and wanted the most recently axed page��

The actual work of freeing the page is done by free page��� the complement of get free page���

It ignores RESERVED pages� updates mem map� then frees the page and updates the page lists

if it is unmapped� For swapping �in � above�� write swap page�� gets called and does noth�

ing remarkable from the memory management perspective�

The details of shrink buffers�� would take us too far a�eld� Essentially it looks for

free bu�ers� then writes out dirty bu�ers� then goes at busy bu�ers and calls free page��

when its able to free all the bu�ers on a page�

	�
� The page fault handlers �

Note that page directories and page tables along with RESERVED pages do not get

swapped� stolen or aged� They are mapped in the process page directory through reserved

page tables� They are freed only on exit from the process�

��� The page fault handlers

When a process is created via fork� it starts out with a page directory and a page or so of

the executable� So the page fault handler is the source of most of a processes� memory�

The page fault handler do page fault�� retrieves the faulting address from the register

cr�� The error code �retrieved in sys call�S� di�erentiates user�supervisor access and the

reason for the fault � write protection or a missing page� The former is handled by

do wp page�� and the latter by do no page���

If the faulting address is greater than TASK SIZE the process receives a SIGKILL�

�Why this check� This can only happen in kernel mode because of segment

level protection��

These routines have some subtleties as they can get called from an interrupt� You can�t

assume that it is the %current� task that is executing�

do no page�� handles three possible situations

�� The page is swapped�

�� The page belongs to the executable or a shared library�

�� The page is missing � a data page that has not been allocated�

In all cases get empty pgtable�� is called �rst to ensure the existence of a page table

that covers the faulting address� In case � get empty page�� is called to provide a page at

the required address and in case of the swapped page� swap in�� is called�

In case �� the handler calls share page�� to see if the page is shareable with some other

process� If that fails it reads in the page from the executable or library �It repeats the call

to share page�� in case another process did the same meanwhile�� Any portion of the page

beyond the brk value is zeroed�

A page read in from the disk is counted as a major fault �maj flt�� This happens with

a swap in�� or when it is read from the executable or a library� Other cases are deemed

minor faults �min flt��

When a shareable page is found� it is write�protected� A process that writes to a shared

page will then have to go through do wp page�� which does the copy�on�write�

	��� Paging �	

do wp page�� does the following

� send SIGSEGV if any user process is writing to current code space�

� If the old page is not shared then just unprotect it�

Else get free page�� and copy page��� The page acquires the dirty �ag from the

old page� Decrement the map count of the old page�

��� Paging

Paging is swapping on a page basis rather than by entire processes� We will use swapping

here to refer to paging� since Linux only pages� and does not swap� and people are more

used to the word �swap� than �page�� Kernel pages are never swapped� Clean pages are also

not written to swap� They are freed and reloaded when required� The swapper maintains

a single bit of aging info in the PAGE ACCESSED bit of the page table entries� �What are

the maintainance details� How is it used��

Linux supports multiple swap �les or devices which may be turned on or o� by the

swapon and swapo� system calls� Each swap�le or device is described by a struct swap info struct

�swap�c��

static struct swap�info�struct �

unsigned long flags�

struct inode � swap�file�

unsigned int swap�device�

unsigned char � swap�map�

char � swap�lockmap�

int lowest�bit�

int highest�bit�

� swap�info�MAX�SWAPFILES��

The �ags �eld �SWP USED or SWP WRITEOK� is used to control access to the swap �les�

When SWP WRITEOK is o� space will not be allocated in that �le� This is used by swapo�

when it tries to unuse a �le� When swapon adds a new swap �le it sets SWP USED� A

static variable nr swapfiles stores the number of currently active swap �les� The �elds

lowest bit and highest bit bound the free region in the swap �le and are used to speed

up the search for free swap space�

The user program mkswap initializes a swap device or �le� The �rst page contains a

signature �%SWAP�SPACE�� in the last �� bytes� and holds a bitmap� Initially ��s in the bitmap

signal bad pages� A %�� in the bitmap means the corresponding page is free� This page is

never allocated so the initialization needs to be done just once�

	��� ����� Memory Mangament ��

The syscall swapon�� is called by the user program swapon typically from �etc�rc� A

couple of pages of memory are allocated for swap map and swap lockmap�

swap map holds a byte for each page in the swap�le� It is initialized from the bitmap to

contain a � for available pages and ��� for unusable pages� It is used to maintain a count of

swap requests on each page in the swap �le� swap lockmap holds a bit for each page that

is used to ensure mutual exclusion when reading or writing swap �les�

When a page of memory is to be swapped out an index to the swap location is obtained

by a call to get swap page��� This index is then stored in bits �#�� of the page table entry

so the swapped page may be located by the page fault handler� do no page�� when needed�

The upper � bits of the index give the swap�le �or device� and the lower �
 bits give

the page number on that device� That makes as many as ��� swap�les� each with room

for about �
 GB� but the space overhead due to the swap map would be large� Instead the

swap�le size is limited to �� MB� because the swap map then takes � page�

The function swap duplicate�� is used by copy page tables�� to let a child process

inherit swapped pages during a fork� It just increments the count maintained in swap map

for that page� Each process will swap in a separate copy of the page when it accesses it�

swap free�� decrements the count maintained in swap map� When the count drops to

� the page can be reallocated by get swap page��� It is called each time a swapped page is

read into memory �swap in��� or when a page is to be discarded �free one table��� etc���

��
 ����
 Memory Mangament

A logical address speci�ed in an instruction is �rst translated to a linear address by the

segmenting hardware� This linear address is then translated to a physical address by the

paging unit�

����� Paging on the �
	

There are two levels of indirection in address translation by the paging unit� A page

directory contains pointers to ���
 page tables� Each page table contains pointers to

���
 pages� The register CR� contains the physical base address of the page directory and

is stored as part of the TSS in the task struct and is therefore loaded on each task switch�

A ���bit Linear address is divided as follows

�� �� �� �� �� �

DIR TABLE OFFSET

	��� ����� Memory Mangament ��

Physical address is then computed �in hardware� as

CR� � DIR points to the table base�

table base � TABLE points to the page base�

physical address � page base � OFFSET

Page directories �page tables� are page aligned so the lower �� bits are used to store

useful information about the page table �page� pointed to by the entry�

Format for Page directory and Page table entries

�� �� �� � � � � 	
 � � � �

ADDRESS OS � � D A � � U�S R�W P

D � means page is dirty �unde�ned for page directory entry��

R�W � means readonly for user�

U�S � means user page�

P � means page is present in memory�

A � means page has been accessed �set to � by aging��

OS bits can be used for LRU etc� and are de�ned by the OS�
The corresponding de�nitions for Linux are in
linux�mm�h��

When a page is swapped� bits �#�� of the page table entry are used to mark where a

page is stored in swap �bit � must be ���

Paging is enabled by setting the highest bit in CR�� �in head�S�� At each stage of

the address translation access permissions are veri�ed and pages not present in memory

and protection violations result in page faults� The fault handler �in memory�c� then either

brings in a new page or unwriteprotects a page or does whatever needs to be done�

Page Fault handling Information

� The register CR� contains the linear address that caused the last page fault�

� Page Fault Error Code ��� bits�

bit cleared set

� page not present page level protection

� fault due to read fault due to write

� supervisor mode user mode

The rest are unde�ned� These are extracted in sys call�S�

The Translation Lookaside Bu�er �TLB� is a hardware cache for physical addresses of

the most recently used virtual addresses� When a virtual address is translated the ��� �rst

	��� ����� Memory Mangament ��

looks in the TLB to see if the information it needs is available� If not� it has to make a

couple of memory references to get at the page directory and then the page table before it

can actually get at the page� Three physical memory references for address translation for

every logical memory reference would kill the system� hence the TLB�

The TLB is �ushed if CR� loaded or by task switch that changes CR�� It is explicitly

�ushed in Linux by calling invalidate�� which just reloads CR��

����� Segments in the
��
	

Segment registers are used in address translation to generate a linear address from a logical

�virtual� address�

linear address � segment base � logical address

The linear address is then translated into a physical address by the paging hardware�

Each segment in the system is described by a � byte segment descriptor which contains

all pertinent information �base� limit� type� privilege��

The segments are�

Regular segments

� code and data segments

System segments

� �TSS� task state segments

� �LDT� local descriptor tables

Characteristics of system segments

� System segments are task speci�c�

� There is a Task State Segment �TSS� associated with each task in the system� It

contains the tss struct �sched�h�� The size of the segment is that of the tss struct

excluding the i��� union ���� bytes�� It contains all the information necessary to

restart the task�

	��� ����� Memory Mangament ��

� The LDT�s contain regular segment descriptors that are private to a task� In Linux

there is one LDT per task� There is room for �� descriptors in the linux task struct�

The normal LDT generated by Linux has a size of �
 bytes� hence room for only �

entries as above� Its contents are

� LDT �! Null �mandatory�

� LDT �! user code segment descriptor�

� LDT �! user data�stack segment descriptor�

� The user segments all have base��x�� so that the linear address is the same as the

logical address�

To keep track of all these segments� the ��� uses a global descriptor table �GDT� that

is setup in memory by the system �located by the GDT register�� The GDT contains

a segment descriptors for each task state segment� each local descriptor tablet and also

regular segments� The Linux GDT contains just two normal segment entries

� GDT �! is the null descriptor�

� GDT �! is the kernel code segment descriptor�

� GDT �! is the kernel data�stack segment descriptor�

The rest of the GDT is �lled with TSS and LDT system descriptors

� GDT �! ���

� GDT
! � TSS�� GDT 	! � LDT��

� GDT �! � TSS�� GDT �! � LDT�

� � � �etc � � �

Note LDT�n� �� LDTn

� LDT n! � the nth descriptor in the LDT of the current task�

� LDTn � a descriptor in the GDT for the LDT of the nth task�

At present the GDT has a total of �	� entries or room for as many as ��� tasks� The

kernel segments have base �xc������� which is where the kernel lives in the linear view�

Before a segment can be used� the contents of the descriptor for that segment must be

loaded into the segment register� The ��� has a complex set of criteria regarding access to

	��� ����� Memory Mangament ���

segments so you can�t simply load a descriptor into a segment register� Also these segment

registers have programmer invisible portions� The visible portion is what is usually called

a segment register
 cs� ds� es� fs� gs� and ss�

The programmer loads one of these registers with a ���bit value called a selector� The

selector uniquely identi�es a segment descriptor in one of the tables� Access is validated

and the corresponding descriptor loaded by the hardware�

Currently Linux largely ignores the �overly�� complex segment level protection af�

forded by the ���� It is biased towards the paging hardware and the associated page level

protection� The segment level rules that apply to user processes are

�� A process cannot directly access the kernel data or code segments

�� There is always limit checking but given that every user segment goes from �x�� to

�xc������� it is unlikely to apply� �This has changed� and needs updating�

please��

����� Selectors in the
��
	

A segment selector is loaded into a segment register �cs� ds� etc�� to select one of the regular

segments in the system as the one addressed via that segment register�

Segment selector Format

�	 � � � �

index TI RPL

TI Table indicator

� means selector indexes into GDT

� means selector indexes into LDT

RPL Privelege level� Linux uses only two privelege levels�

� means kernel

� means user

Examples�

Kernel code segment

TI��� index��� RPL��� therefore selector � �x�� �GDT �!�

User data segment

TI��� index��� RPL��� therefore selector � �x�� �LDT �!�

	��� ����� Memory Mangament ���

Selectors used in Linux

TI index RPL selector segment

� � � �x�� kernel code GDT �!

� � � �x�� kernel data�stack GDT �!

� � � ��� ��� GDT �!

� � � �x�F user code LDT �!

� � � �x�� user data�stack LDT �!

Selectors for system segments are not to be loaded directly into segment registers� Instead

one must load the TR or LDTR�

On entry into syscall

� ds and es are set to the kernel data segment ��x���

� fs is set to the user data segment ��x��� and is used to access data pointed to by

arguments to the system call�

� The stack segment and pointer are automatically set to ss� and esp� by the interrupt

and the old values restored when the syscall returns�

����� Segment descriptors

There is a segment descriptor used to describe each segment in the system� There are

regular descriptors and system descriptors� Here�s a descriptor in all its glory� The strange

format is essentally to maintain compatibility with the ���� Note that it takes � bytes�
����� �� �� �� �� ����� �� �� �� ����� ����� ����

Base G D R U Limit P DPL S TYPE Segment Base Segment Limit

����� ����� ���� ����

Explanation�

R reserved ���

DPL � means kernel� � means user

G � means
K granularity �Always set in Linux�

D � means default operand size ��bits

U programmer de�nable

P � means present in physical memory

S � means system segment� � means normal code or data segment�

Type There are many possibilities� Interpreted di�erently for system and normal descriptors�

Linux system descriptors�

TSS
 P��� DPL��� S��� type��� limit � ��� room for � tss struct�

	��� ����� Memory Mangament ���

LDT
 P��� DPL��� S��� type��� limit � �� room for � segment descriptors�

The base is set during fork��� There is a TSS and LDT for each task�

Linux regular kernel descriptors� �head�S�

code
 P��� DPL��� S��� G��� D��� type�a� base��xc�������� limit��x���

data
 P��� DPL��� S��� G��� D��� type��� base��xc�������� limit��x���

The LDT for task��� contains� �sched�h�

code
 P��� DPL��� S��� G��� D��� type�a� base��xc�������� limit��x�f

data
 P��� DPL��� S��� G��� D��� type��� base��xc�������� limit��x�f

The default LDT for the remaining tasks� �exec���

code
 P��� DPL��� S��� G��� D��� type�a� base��� limit� �xb��

data
 P��� DPL��� S��� G��� D��� type��� base��� limit� �xb��

The size of the kernel segments is �x
���� pages �
KB pages since G�� � � Gigabyte�

The type implies that the permissions on the code segment is read�exec and on the data

segment is read�write�

Registers associated with segmentation� Format of segment register
 �Only the selec�

tor is programmer visible�

���bit ���bit ���bit

selector physical base addr segment limit attributes

The invisible portion of the segment register is more conveniently viewed in terms of the

format used in the descriptor table entries that the programmer sets up� The descriptor

tables have registers associated with them that are used to locate them in memory� The

GDTR �and IDTR� are initialized at startup once the tables are de�ned� The LDTR is

loaded on each task switch�

Format of GDTR �and IDTR��

���bits ���bits

Linear base addr table limit

The TR and LDTR are loaded from the GDT and so have the format of the other

segment registers� The task register �TR� contains the descriptor for the currently executing

task�s TSS� The execution of a jump to a TSS selector causes the state to be saved in the

old TSS� the TR is loaded with the new descriptor and the registers are restored from the

new TSS� This is the process used by schedule to switch to various user tasks� Note that

	��� ����� Memory Mangament ���

the �eld tss struct�ldt contains a selector for the LDT of that task� It is used to load

the LDTR� �sched�h�

����� Macros used in setting up descriptors

Some assembler macros are de�ned in sched�h and system�h to ease access and setting of

descriptors� Each TSS entry and LDT entry takes � bytes�

Manipulating GDT system descriptors�

� TSS�n��

LDT�n� These provide the index into the GDT for the n�th task�

� LDT�n� is stored in the the ldt �eld of the tss struct by fork�

� set tssldt desc�n� addr� limit� type�

ulong �n points to the GDT entry to set �see fork�c�� The segment base �TSS or

LDT� is set to �xc������� � addr� Speci�c instances of the above are� where ltype

refers to the byte containing P� DPL� S and type

set ldt desc�n� addr� ltype � �x��

P��� DPL��� S��� type�� means LDT entry� limit � �� �& room

for � segment descriptors�

set tss desc�n� addr� ltype � �x��

P��� DPL��� S��� type � �� means available ����� TSS limit � ���

room for � tss struct�

� load TR�n��

load ldt�n� load descriptors for task number n into the task register and ldt register�

� ulong get base �struct desc struct ldt� gets the base from a descriptor�

� ulong get limit �ulong segment� gets the limit �size� from a segment selector�

Returns the size of the segment in bytes�

� set base�struct desc struct ldt� ulong base��

set limit�struct desc struct ldt� ulong limit�

Will set the base and limit for descriptors �
K granular segments�� The limit here is

actually the size in bytes of the segment�

� set seg desc�gate addr� type� dpl� base� limit�

Default values �x��
����� �& D��� P��� G��

	��� ����� Memory Mangament ��

Present� operation size is �� bit and max size is �M�

gate addr must be a �ulong ��

Appendix A

Annotated Bibliography

This bibliography covers books on operating system theory as well as di�erent kinds of

programming in a un�x environment� The price marked may or may not be an exact price�

but should be close enough for government work� �If you have a book that you think

should go in the bibliography� please write a short review of it and send all the

necessary information �title� author� publisher� ISBN� and approximate price�

and the review to johnsonm�sunsite�unc�edu�

Title� The Design of the UNIX Operating System

Author� Maurice J� Bach

Publisher� Prentice Hall� ����

ISBN� �������������

Appr� Price� $�	���

This is one of the books that Linus used to design Linux� It is a description

of the data structures used in the System V kernel� Many of the names of the

important functions in the Linux source come from this book� and are named

after the algorithms presented here� For instance� if you can�t quite �gure out

what exactly getblk��� brelse��� bread��� breada��� and bwrite�� are� chapter �

explains very well�

While most of the algorithms are similar or the same� a few di�erences are

worth noting

� The Linux bu�er cache is dynamically resized� so the algorithm for dealing

with getting new bu�ers is a bit di�erent� Therefore the above referenced

explanation of getblk�� is a little di�erent than the getblk�� in Linux�

��	

	��� ����� Memory Mangament ���

� Linux does not currently use streams� and if�when streams are imple�

mented for Linux� they are likely to have somewhat di�erent semantics�

� The semantics and calling structure for device drivers is di�erent� The con�

cept is similar� and the chapter on device drivers is still worth reading� but

for details on the device driver structures� the The Linux Kernel Hackers�

Guide is the proper reference�

� The memory management algorithms are somewhat di�erent�

There are other small di�erences as well� but a good understanding of this text

will help you understand the Linux source�

Title� Advanced Programming in the UNIX Environment

Author� W� Richard Stevens

Publisher� Addison Wesley� ����

ISBN� ������	������

Appr� Price� $	����

This excellent tome covers the stu� you really have to know to write real un�x

programs� It includes a discussion of the various standards for un�x implemen�

tations� including POSIX� X�Open XPG�� and FIPS� and concentrates on two

implementations� SVR
 and pre�release
�
 BSD� which it refers to as
���BSD�

The book concentrates heavily on application and fairly complete speci�cation�

and notes which features relate to which standards and releases�

The chapters include
 Unix Standardization and Implementations� File I�O�

Files and Directories� Standard I�O Library� System Data Files and Information�

The Environment of a Unix Process� Process Control� Process Relationships�

Signals� Terminal I�O� Advanced I�O �non�blocking� streams� async� memory�

mapped� etc��� Daemon Processes� Interprocess Communication� Advanced In�

terprocess Communication� and some example applications� including chapters

on A Database Library� Commmunicating with a PostScript Printer� A Modem

Dialer� and then a seemingly misplaced �nal chapter on Pseudo Terminals�

I have found that this book makes it possible for me to write useable programs

for un�x� It will help you achieve POSIX compliance in ways that won�t break

SVR
 or BSD� as a general rule� This book will save you ten times its cost in

frustration�

Title� Advanced ����� Programming Techniques

	��� ����� Memory Mangament ���

Author� James L� Turley

Publisher� Osborne McGraw�Hill� ����

ISBN� ���������
��	

Appr� Price� $����	

This book covers the ����� quite well� without touching on any other hardware�

Some code samples are included� All major features are covered� as are many of

the concepts needed� The chapters of this book are
 Basics� Memory Segmen�

tation� Privilege Levels� Paging� Multitasking� Communicating Among Tasks�

Handling Faults and Interrupts� ����� Emulation� ���� Emulation� Debugging�

The ����� Numeric Processor Extension� Programming for Performance� Re�

set and Real Mode� Hardware� and a few appendices� including tables of the

memory management structures as a handy reference�

The author has a good writing style
 If you are technically minded� you will

�nd yourself caught up just reading this book� One strong feature of this book

for Linux is that the author is very careful not to explain how to do things

under DOS� nor how to deal with particular hardware� In fact� the only times

he mentions DOS and PC�compatible hardware are in the introduction� where

he promises never to mention them again�

Title� The C Programming Language� second edition

Author� Brian W� Kernighan and Dennis M� Ritchie

Publisher� Prentice Hall� ����

ISBN� ������������� �paper� ������������� �hard�

Appr� Price� $�	���

The C programming bible� Includes a C tutorial� un�x interface reference� C

reference� and standard library reference�

You program in C� you buy this book� It�s that simple�

Title� Operating Systems
 Design and Implementation

Author� Andrew S� Tanenbaum

Publisher� Prentice Hall� ����

ISBN� ��������
����

Appr� Price� $	����

	��� ����� Memory Mangament ���

This book� while a little simplistic in spots� and missing some important ideas�

is a fairly clear exposition of what it takes to write an operating system� Half

the book is taken up with the source code to a un�x clone called Minix� which is

based on a microkernel� unlike Linux� which sports a monolithic design� It has

been said that Minix shows that it is possible to to write a microkernel�based

un�x� but does not adequately explain why one would do so�

Linux was originally intended to be a free Minix replacement
� In fact�

it was originally to be binary�compatible with Minix����� Minix���� was the

development environment under which Linux was bootstrapped� No Minix

code is in Linux� but vesitiges of this heritage live on in such things as the

minix �lesystem in Linux� Early in Linux�s existence� Andrew Tanenbaum

started a �ame war with Linus about OS design� which was interesting� if not

enlightening� � �

However� this book might still prove worthwhile for those who want a basic

explanation of OS concepts� as Tanenbaum�s explanations of the basic concepts

remain some of the clearer �and more entertaining� if you like to be entertained�

available� Unfortunately� basic is the key work here� as many things such as

virtual memory are not covered at all�

Title� Modern Operating Systems

Author� Andrew S� Tanenbaum

Publisher� Prentice Hall� ����

ISBN� �����	�������

Appr� Price� $	���	

The �rst half of this book is a rewrite of Tanenbaum�s earlier Operating Systems�

but this book covers several things that the earlier book missed� including such

things as virtual memory� Minix is not included� but overviews of MS�DOS and

several distributed systems are� This book is probably more useful to someone

who wants to do something with his or her knowlege than Tanenbaum�s earlier

Operating Systems� Design and Implementation� Some clue as to the reason

may be found in the title� � � However� what DOS is doing in a book on modern

operating systems� many have failed to discover�

Title� Operating Systems

�Linus� Minix� Linus tells us�

	��� ����� Memory Mangament ���

Author� William Stallings

Publisher� Macmillan� ���� �����	
�������

ISBN� �����
�	
���

Appr� Price� $�����

A very thorough text on operating systems� this book gives more in�depth cov�

erage of the topics covered in Tannebaum�s books� and covers more topics� in a

much brisker style� This book covers all the major topics that you would need to

know to build an operating system� and does so in a clear way� The author uses

examples from three major systems� comparing and contrasting them
 un�x�

OS��� and MVS� With each topic covered� these example systems are used to

clarify the points and provide an example of an implementation�

Topics covered in Operating Systems include threads� real�time systems� mul�

tiprocessor scheduling� distributed systems� process migration� and security� as

well as the standard topics like memory management and scheduling� The sec�

tion on distributed processing appears to be up�to�date� and I found it very

helpful�

Title� UNIX Network Programming

Author� W� Richard Stevens

Publisher� Prentice Hall� ����

ISBN� ������
������

Appr� Price� $
���	

This book covers several kinds of networking under un�x� and provides very

thorough references to the forms of networking that it does not cover directly�

It covers TCP�IP and XNS most heavily� and fairly exhaustively describes how

all the calls work� It also has a description and sample code using System V�s

TLI� and pretty complete coverage of System V IPC� This book contains a lot

of source code examples to get you started� and many useful proceedures� One

example is code to provide useable semaphores� based on the partially broken

implementation that System V provides�

Title� Programming in the UNIX environment

Author� Brian W� Kernighan and Robert Pike

	��� ����� Memory Mangament ���

Publisher� Prentice Hall� ���

ISBN� ����������� �hardcover� ������������X �paperback�

Appr� Price� $�����

no abstract

Title� Writing UNIX Device Drivers

Author� George Pajari

Publisher� Addison Wesley� ����

ISBN� ������	���
�

Appr� Price� $����	

This book is written by the President and founder of Driver Design Labs�

a company which specializes in the development of un�x device drivers� This

book is an excellent introduction to the sometimes wacky world of device driver

design� The four basic types of drivers �character� block� tty� STREAMS� are

�rst discussed brie�y� Many full examples of device drivers of all types are

given� starting with the simplest and progressing in complexity� All examples

are of drivers which deal with un�x on PC�compatible hardware� Chapters

include� Character Drivers I
 A Test Data Generator Character Drivers II

An A�D Converter Character Drivers III
 A Line Printer Block Drivers I
 A

Test Data Generator Block Drivers II
 A RAM Disk Driver Block Drivers III
 A

SCSI Disk Driver Character Drivers IV
 The Raw Disk Driver Terminal Drivers

I
 The COM� Port Character Drivers V
 A Tape Drive STREAMS Drivers I

A Loop�Back Driver STREAMS Drivers II
 The COM� Port �Revisited� Driver

Installation Zen and the Art of Device Driver Writing

Although many of the calls used in the book are not Linux�compatible� the

general idea is there� and many of the ideas map directly into Linux�

Title� title

Author� author

Publisher� pub�yr

ISBN� isbn

Appr� Price� $�����

	��� ����� Memory Mangament ���

no abstract

Appendix B

The GNU General Public License

Printed below is the GNU General Public License �the GPL or copyleft�� under which Linux

is licensed� It is reproduced here to clear up some of the confusion about Linux�s copyright

status � Linux is not shareware� and it is not in the public domain� The bulk of the Linux

kernel is copyright c� ���� by Linus Torvalds� and other software and parts of the kernel are

copyrighted by their authors� Thus� Linux is copyrighted� however� you may redistribute it

under the terms of the GPL printed below�

GNU GENERAL PUBLIC LICENSE

Version �� June ����

Copyright �C� ����� ���� Free Software Foundation� Inc� ��	 Mass Ave� Cambridge� MA

������ USA�

Everyone is permitted to copy and distribute verbatim copies of this license document� but

changing it is not allowed�

B�� Preamble

The licenses for most software are designed to take away your freedom to share and change

it� By contrast� the GNU General Public License is intended to guarantee your freedom

to share and change free software#to make sure the software is free for all its users� This

General Public License applies to most of the Free Software Foundation�s software and to

any other program whose authors commit to using it� �Some other Free Software Foundation

software is covered by the GNU Library General Public License instead�� You can apply it

to your programs� too�

When we speak of free software� we are referring to freedom� not price� Our General

Public Licenses are designed to make sure that you have the freedom to distribute copies

���

B�
� Terms and Conditions ���

of free software �and charge for this service if you wish�� that you receive source code or

can get it if you want it� that you can change the software or use pieces of it in new free

programs� and that you know you can do these things�

To protect your rights� we need to make restrictions that forbid anyone to deny you

these rights or to ask you to surrender the rights� These restrictions translate to certain

responsibilities for you if you distribute copies of the software� or if you modify it�

For example� if you distribute copies of such a program� whether gratis or for a fee� you

must give the recipients all the rights that you have� You must make sure that they� too�

receive or can get the source code� And you must show them these terms so they know

their rights�

We protect your rights with two steps
 ��� copyright the software� and ��� o�er you this

license which gives you legal permission to copy� distribute and�or modify the software�

Also� for each author�s protection and ours� we want to make certain that everyone

understands that there is no warranty for this free software� If the software is modi�ed by

someone else and passed on� we want its recipients to know that what they have is not the

original� so that any problems introduced by others will not re�ect on the original authors�

reputations�

Finally� any free program is threatened constantly by software patents� We wish to avoid

the danger that redistributors of a free program will individually obtain patent licenses� in

e�ect making the program proprietary� To prevent this� we have made it clear that any

patent must be licensed for everyone�s free use or not licensed at all�

The precise terms and conditions for copying� distribution and modi�cation follow�

B�� Terms and Conditions for Copying� Distribution� and

Modi�cation

�� This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General

Public License� The �Program�� below� refers to any such program or work� and a

�work based on the Program� means either the Program or any derivative work under

copyright law
 that is to say� a work containing the Program or a portion of it� either

verbatim or with modi�cations and�or translated into another language� �Hereinafter�

translation is included without limitation in the term �modi�cation��� Each licensee

is addressed as �you��

Activities other than copying� distribution and modi�cation are not covered by this

B�
� Terms and Conditions ��

License� they are outside its scope� The act of running the Program is not restricted�

and the output from the Program is covered only if its contents constitute a work

based on the Program �independent of having been made by running the Program��

Whether that is true depends on what the Program does�

�� You may copy and distribute verbatim copies of the Program�s source code as you

receive it� in any medium� provided that you conspicuously and appropriately publish

on each copy an appropriate copyright notice and disclaimer of warranty� keep intact

all the notices that refer to this License and to the absence of any warranty� and give

any other recipients of the Program a copy of this License along with the Program�

You may charge a fee for the physical act of transferring a copy� and you may at your

option o�er warranty protection in exchange for a fee�

�� You may modify your copy or copies of the Program or any portion of it� thus forming

a work based on the Program� and copy and distribute such modi�cations or work

under the terms of Section � above� provided that you also meet all of these conditions

a� You must cause the modi�ed �les to carry prominent notices stating that you

changed the �les and the date of any change�

b� You must cause any work that you distribute or publish� that in whole or in part

contains or is derived from the Program or any part thereof� to be licensed as a

whole at no charge to all third parties under the terms of this License�

c� If the modi�ed program normally reads commands interactively when run� you

must cause it� when started running for such interactive use in the most ordinary

way� to print or display an announcement including an appropriate copyright

notice and a notice that there is no warranty �or else� saying that you provide a

warranty� and that users may redistribute the program under these conditions�

and telling the user how to view a copy of this License� �Exception
 if the

Program itself is interactive but does not normally print such an announcement�

your work based on the Program is not required to print an announcement��

These requirements apply to the modi�ed work as a whole� If identi�able sections

of that work are not derived from the Program� and can be reasonably considered

independent and separate works in themselves� then this License� and its terms� do

not apply to those sections when you distribute them as separate works� But when

you distribute the same sections as part of a whole which is a work based on the

Program� the distribution of the whole must be on the terms of this License� whose

permissions for other licensees extend to the entire whole� and thus to each and every

part regardless of who wrote it�

B�
� Terms and Conditions ��	

Thus� it is not the intent of this section to claim rights or contest your rights to

work written entirely by you� rather� the intent is to exercise the right to control the

distribution of derivative or collective works based on the Program�

In addition� mere aggregation of another work not based on the Program with the Pro�

gram �or with a work based on the Program� on a volume of a storage or distribution

medium does not bring the other work under the scope of this License�

�� You may copy and distribute the Program �or a work based on it� under Section ��

in object code or executable form under the terms of Sections � and � above provided

that you also do one of the following

a� Accompany it with the complete corresponding machine�readable source code�

which must be distributed under the terms of Sections � and � above on a medium

customarily used for software interchange� or�

b� Accompany it with a written o�er� valid for at least three years� to give any third

party� for a charge no more than your cost of physically performing source distri�

bution� a complete machine�readable copy of the corresponding source code� to be

distributed under the terms of Sections � and � above on a medium customarily

used for software interchange� or�

c� Accompany it with the information you received as to the o�er to distribute

corresponding source code� �This alternative is allowed only for noncommercial

distribution and only if you received the program in object code or executable

form with such an o�er� in accord with Subsection b above��

The source code for a work means the preferred form of the work for making mod�

i�cations to it� For an executable work� complete source code means all the source

code for all modules it contains� plus any associated interface de�nition �les� plus

the scripts used to control compilation and installation of the executable� However�

as a special exception� the source code distributed need not include anything that is

normally distributed �in either source or binary form� with the major components

�compiler� kernel� and so on� of the operating system on which the executable runs�

unless that component itself accompanies the executable�

If distribution of executable or object code is made by o�ering access to copy from

a designated place� then o�ering equivalent access to copy the source code from the

same place counts as distribution of the source code� even though third parties are

not compelled to copy the source along with the object code�

� You may not copy� modify� sublicense� or distribute the Program except as expressly

provided under this License� Any attempt otherwise to copy� modify� sublicense or

B�
� Terms and Conditions ���

distribute the Program is void� and will automatically terminate your rights under

this License� However� parties who have received copies� or rights� from you under

this License will not have their licenses terminated so long as such parties remain in

full compliance�

	� You are not required to accept this License� since you have not signed it� However�

nothing else grants you permission to modify or distribute the Program or its deriva�

tive works� These actions are prohibited by law if you do not accept this License�

Therefore� by modifying or distributing the Program �or any work based on the Pro�

gram�� you indicate your acceptance of this License to do so� and all its terms and

conditions for copying� distributing or modifying the Program or works based on it�

�� Each time you redistribute the Program �or any work based on the Program�� the

recipient automatically receives a license from the original licensor to copy� distribute

or modify the Program subject to these terms and conditions� You may not impose

any further restrictions on the recipients� exercise of the rights granted herein� You

are not responsible for enforcing compliance by third parties to this License�

�� If� as a consequence of a court judgment or allegation of patent infringement or for any

other reason �not limited to patent issues�� conditions are imposed on you �whether

by court order� agreement or otherwise� that contradict the conditions of this License�

they do not excuse you from the conditions of this License� If you cannot distribute

so as to satisfy simultaneously your obligations under this License and any other

pertinent obligations� then as a consequence you may not distribute the Program at

all� For example� if a patent license would not permit royalty�free redistribution of

the Program by all those who receive copies directly or indirectly through you� then

the only way you could satisfy both it and this License would be to refrain entirely

from distribution of the Program�

If any portion of this section is held invalid or unenforceable under any particular

circumstance� the balance of the section is intended to apply and the section as a

whole is intended to apply in other circumstances�

It is not the purpose of this section to induce you to infringe any patents or other

property right claims or to contest validity of any such claims� this section has the

sole purpose of protecting the integrity of the free software distribution system� which

is implemented by public license practices� Many people have made generous contri�

butions to the wide range of software distributed through that system in reliance on

consistent application of that system� it is up to the author�donor to decide if he or

she is willing to distribute software through any other system and a licensee cannot

impose that choice�

B�
� Terms and Conditions ���

This section is intended to make thoroughly clear what is believed to be a consequence

of the rest of this License�

�� If the distribution and�or use of the Program is restricted in certain countries either

by patents or by copyrighted interfaces� the original copyright holder who places the

Program under this License may add an explicit geographical distribution limitation

excluding those countries� so that distribution is permitted only in or among countries

not thus excluded� In such case� this License incorporates the limitation as if written

in the body of this License�

�� The Free Software Foundation may publish revised and�or new versions of the General

Public License from time to time� Such new versions will be similar in spirit to the

present version� but may di�er in detail to address new problems or concerns�

Each version is given a distinguishing version number� If the Program speci�es a

version number of this License which applies to it and �any later version�� you have

the option of following the terms and conditions either of that version or of any later

version published by the Free Software Foundation� If the Program does not specify

a version number of this License� you may choose any version ever published by the

Free Software Foundation�

��� If you wish to incorporate parts of the Program into other free programs whose dis�

tribution conditions are di�erent� write to the author to ask for permission� For

software which is copyrighted by the Free Software Foundation� write to the Free

Software Foundation� we sometimes make exceptions for this� Our decision will be

guided by the two goals of preserving the free status of all derivatives of our free

software and of promoting the sharing and reuse of software generally�

NO WARRANTY

��� BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE� THERE IS NO

WARRANTY FOR THE PROGRAM� TO THE EXTENT PERMITTED BY AP�

PLICABLE LAW� EXCEPT WHEN OTHERWISE STATED IN WRITING THE

COPYRIGHT HOLDERS AND�OR OTHER PARTIES PROVIDE THE PROGRAM

�AS IS� WITHOUT WARRANTY OF ANY KIND� EITHER EXPRESSED OR IM�

PLIED� INCLUDING� BUT NOT LIMITED TO� THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE� THE

ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO�

GRAM IS WITH YOU� SHOULD THE PROGRAM PROVE DEFECTIVE� YOU

ASSUME THE COST OF ALL NECESSARY SERVICING� REPAIR OR CORREC�

TION�

B��� How to Apply These Terms ���

��� IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER� OR ANY OTHER PARTY WHO

MAY MODIFY AND�OR REDISTRIBUTE THE PROGRAM AS PERMITTED

ABOVE� BE LIABLE TO YOU FOR DAMAGES� INCLUDING ANY GENERAL�

SPECIAL� INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

THE USE OR INABILITY TO USE THE PROGRAM �INCLUDING BUT NOT

LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE

PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS�� EVEN IF SUCH

HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES�

END OF TERMS AND CONDITIONS

B�� Appendix� How to Apply These Terms to Your New

Programs

If you develop a new program� and you want it to be of the greatest possible use to the public�

the best way to achieve this is to make it free software which everyone can redistribute and

change under these terms�

To do so� attach the following notices to the program� It is safest to attach them to the

start of each source �le to most e�ectively convey the exclusion of warranty� and each �le

should have at least the �copyright� line and a pointer to where the full notice is found�

hone line to give the program�s name and a brief idea of what it does�i Copyright

c� ��yy hname of authori

This program is free software� you can redistribute it and�or modify it under

the terms of the GNU General Public License as published by the Free Software

Foundation� either version � of the License� or �at your option� any later version�

This program is distributed in the hope that it will be useful� but WITHOUT

ANY WARRANTY� without even the implied warranty of MERCHANTABIL�

ITY or FITNESS FOR A PARTICULAR PURPOSE� See the GNU General

Public License for more details�

You should have received a copy of the GNU General Public License along with

this program� if not� write to the Free Software Foundation� Inc�� ��	 Mass Ave�

Cambridge� MA ������ USA�

B��� How to Apply These Terms ���

Also add information on how to contact you by electronic and paper mail�

If the program is interactive� make it output a short notice like this when it starts in an

interactive mode

Gnomovision version %&� Copyright
C
 �&yy name of author Gnomovision comes

with ABSOLUTELY NO WARRANTY� for details type)show w�! This is free software�

and you are welcome to redistribute it under certain conditions� type)show

c� for details!

The hypothetical commands %show w� and %show c� should show the appropriate parts

of the General Public License� Of course� the commands you use may be called something

other than %show w� and %show c�� they could even be mouse�clicks or menu items � whatever

suits your program�

You should also get your employer �if you work as a programmer� or your school� if any�

to sign a �copyright disclaimer� for the program� if necessary� Here is a sample� alter the

names

Yoyodyne� Inc�� hereby disclaims all copyright interest in the program %Gnomo�

vision� �which makes passes at compilers� written by James Hacker�

hsignature of Ty Cooni� � April ���� Ty Coon� President of Vice

This General Public License does not permit incorporating your program into propri�

etary programs� If your program is a subroutine library� you may consider it more useful

to permit linking proprietary applications with the library� If this is what you want to do�

use the GNU Library General Public License instead of this License�

