
1

Microsoft’s Original DOS File System, FAT12, and
its Evolution to Become FAT32, Windows 95’s Most

Current File System

Introduction

 In 1977, a small, budding company, named Microsoft, invented a file system

called the File Allocation Table, or FAT. This system was developed for Microsoft’s

Stand-alone Disk Basic interpreter. It was later adapted to Microsoft’s Disk Operating

System, or DOS. The FAT file system was intended for floppy disks, so the maximum

amount of memory the file system could allocate was a whopping 8 megabytes of

information. Surely, the 8 megabyte ceiling was all but unattainable; imagine, a personal

computer that would require 8 million bytes of information.

During DOS 2.0, Microsoft saw the need for allocation of more memory, so in

DOS 3.0, Microsoft introduced FAT16. This new FAT system could allocation up to 32

megabytes. This seemed large enough, but in 1987, the size envelope was pushed to its

limit by the hard disks of the time. Microsoft responded with DOS 4.0. This extended the

allocable memory size to 128 megabytes. Minor extensions then raised this ceiling to 2

gigabytes.

For about ten years, the 2 gigabyte ceiling was more than enough. Now, with hard

drives commonly available of more than 2 gigabytes in size, a new FAT file system has

been developed called FAT32. The FAT32 file system is capable of allocating up to 2

terabytes of information.

2

FAT32 is the latest version of the FAT file system offered by Microsoft in its

extremely successful DOS/Windows 95 operation system series. It is the product of a

constantly evolving FAT file system. Aside from the amount of allocable memory, FAT32

is far superior than the original FAT file system in many ways such as the sizes of a valid

filename. This paper will discuss and explain the original FAT file system. It will then

discuss the three major upgrades to this file system: FAT16, VFAT, and FAT32.

Basic Structure of Disks

 Floppy disk drives and hard disk drives are slightly different in structure, but both

consist of magnetic platters, or disks, that hold magnetic charges in certain areas. A hard

drive can contain many disks stacked on top of each other. Floppy disk contains only one

disk. Areas with a magnetic charge are designated as digital ones, while areas without a

magnetic charge are interpreted as digital zeros. The mechanical read/write disk head is

responsible for reading and writing the magnetic fields on the disk. The disk is then spun

at very high velocities. By doing this, the heads only need to move from the outside of the

disk to the center. Figure 1 illustrates this.

3

Figure 1: The Disk and Head Layout

The disks are divide into concurrent circles called tracks. Each track contains a

line of changing magnetic charges in the shape of a circle. The disk is also divided into

small pie shaped slices called sectors. Figure 2 further illustrates the sectors and tracks on

a disk.

Figure 2: The Sectors and Tracks of a Disk

Each sector contains 512 bytes of information. This is the smallest amount of

information that a program can access. A program accesses this by a function call to the

disk driver. This function call is not normally called by an individual program. A normal

4

program calls a function that belongs to the operating system. This function retrieves or

writes a whole cluster of information. A cluster is defined as a group of sectors. The

exact size of a cluster can range from one sectors per cluster (512 bytes), up to 64 sectors

per cluster (32,768 bytes). The size of a cluster is determined by the size of the disk drive

and the version of the FAT that is used. The advantages and disadvantages to the cluster

size is discussed in detail later in the paper.

FAT12

 FAT12 is the unofficial name of the original FAT file system. This paper will

address the original FAT file system as FAT12 to differentiate the original system from the

later versions. The volume is the basic unit for the DOS FAT file system. From a user

standpoint, the volume corresponds to the drive letter at the command prompt. One

volume is contained on a floppy disk, while a hard disk drive can be partitioned into many

volumes. For the FAT12 file system, which is found in DOS 1.0 and 2.0, the maximum

size of a volume is 8 Megabytes.

The volume is divided into four major sections: the boot sector, file allocation

tables, root directory, and data area.

The Boot Sector

The boot sector is the heart of the FAT file system. It contains all the information

needed by DOS to call the disk driver functions to access individual sectors. The boot

sector is always located in the first sector of the disk. Table 1 shows the fields of

information that are found in the boot sector.

Table 1: The Boot Sector Field Locations

5

Address Field Description Length in Bytes
00h Jump to boot routine 3
03h Manufacturer’s information 8
0Bh Bytes per sector 2
0Dh Sectors per cluster 1
0Eh Number of reserved sectors 2
10h Number of FATs 1
11h Number of entries in the root directory 2
13h Number of sectors in volume 2
15h Media descriptor 1
16h Number of sectors per FAT 2
18h Sectors per track 2
1Ah Number of read/write heads 2
1Ch Number of hidden sectors 2
1Eh Boot routine Variable

.

The Boot Routine: The boot sector is named boot sector because it

contains the boot routine. The very first three bytes on the disk is an actual jump

instruction to the boot routine. In floppy disks that are not boot disks, the jump to the

boot routine is not necessary, but with hard disks, it is very necessary. When a PC is first

turned on, the ROM BIOS executes and performs many low level tasks. These tasks do

not include loading up DOS. One of the last commands in the ROM BIOS is a jump to

the first byte in the first sector on the default drive. These bytes then tell the CPU to jump

to the boot routine. This is the routine that actually loads up DOS.

Lastly, the “boot routine” starts at address 1Eh, and can extend to the end of the

sector, or even to the next couple of sector. The “number of reserved sectors” field

contains the total number of sectors needed by the boot sector.

The Manufacturer: The next eight bytes of information, starting at location

03H, contain information on the manufacturer, where the disk was formatted, and the

version of DOS used.

6

The BIOS Parameter Block: The next eleven fields (starting at location

0Bh) are called the BIOS Parameter Block (BPB). These fields contain the information

needed by the BIOS when a low level BIOS function is called (namely the 13H BIOS

functions). The “number of reserved sectors” field contains the number of sectors the

boot sector fills up. Remember, the boot routine is found in the boot sector section; this

can get fairly large.

As explained in this paper, the FAT is very important. Because of this, multiple

copies of the FAT can be stored; the second FAT is stored right after the first. If an error

is detected in the first FAT, a new FAT can be loaded up. Usually, only two copies are

stored.

The “media descriptor” field contains a code for the type of disk that the boot

sector is on. Table 2 contains the codes and corresponding description.

Table 2: The Codes for the Media Descriptor Field

Code Device Description
F0h 3.5 “ disk drive 2 sides, 80 tracks, 18 sectors per track
F8h Hard drive Varies
F9h 5.25” disk drive

3.5” disk drive
2 sides, 80 tracks, 15 sectors per track
2 sides, 80 tracks, 9 sectors per track

FAh 5.25” disk drive
3.5” disk drive

1 side, 80 tracks, 8 sectors per track
1 side, 80 tracks, 8 sectors per track

FBh 5.25” disk drive
3.5” disk drive

2 sides, 80 tracks, 8 sectors per track
2 sides, 80 tracks, 8 sectors per track

FCh 5.25” disk drive 1 side, 40 tracks, 9 sectors per track
FDh 5.25” disk drive 2 sides, 40 tracks, 9 sectors per track
FEh 5.25” disk drive 1 side, 40 tracks, 8 sectors per track
FFh 5.25” disk drive 2 sides, 40 tracks, 8 sectors per track

The Root Directory

7

The file allocation tables are found after the boot sector, and the root directory is

found after the file allocation tables (the root directory is being discussed out of order

because knowledge of the root directory is needed to fully explain the file allocation table).

The DOS file system is a hierarchically based system like the UNIX system. The root

directory is the father of all the files and subdirectories. Subdirectories can be placed in

the root directory, and can contain other subdirectories and files. Look at figure 3 for an

illustration of this.

Figure 3: The Hierarchical Directory Arangement

Each file and subdirectory contained in the root directory has a 32 byte entry that

describes the file or subdirectory and location. A description of the directory entry

structure is found in Table 3.

Table 3: The 32 Byte Directory Entry

Address Field Description Length in Bytes

8

00h Filename 8
08h File extension 3
0Bh File Attribute 1
0Ch Reserved 10
16h Time of last change 2
18h Date of last change 2
1Ah First cluster of file 2
1Ch File size 4

The Filename: DOS sees a filename as eight characters, then a period, then

a three character extension (for example, FILENUM1.TXT); this is referred to as the 8.3

filename. DOS stores each character as an ASCII character, so only one byte per

character is needed. The first field in the directory entry is the first part of the file name.

The second field is the extension. The period is not stored because it is common to all

filenames. If the filename is less than eight character with a three character extension,

spaces (ASCII 32) are placed in the unused fields.

The first character in the directory entry, which is the first character of the filename

field, can contain special codes. Table 5 contains these special codes and meaning.

Table 5: The Special Codes Found in the First Character
of the Directory Entry

Code Meaning
00h Last directory entry
05h First character of filename has ASCII code E5h
E5h File Deleted

File Attributes: The next field, the “file attribute” field, is a byte long of

bitwise flags that describe the attributes of the file or directory. Table 6 describes the bit

meanings. The “write protected”, “hidden file”, and “system file” bits are self-explanatory.

The volume name bit is set to a one if the file that the entry describes is the volume name.

9

There is only one volume name file in a particular volume. This directory entry describes a

file that contains a description of the volume. If the command VOL is typed at the

command prompt of a computer running DOS, the contents of the file is displayed.

Table 6: The File Attribute Field

Bit Description
0 1 = Read only
1 1 = Hidden file
2 1 = System file
3 1 = Volume Name
4 1 = Subdirectory
5 Archive bit
6 Reserved
7 Reserved

The “archive” bit is used by backup programs. This bit is set to a one if the file

that the entry describes is changed. When a backup program runs, it looks at this

attribute; if it is a one, the program backs up the file. The backup program will then place

a zero in the “archive” bit. With the “archive” bit, a backup program does not have to

backup a whole hard drive, just the files that have changed since the program was last

backed up. The “subdirectory” bit is changed to a one if the file that the directory entry

describes is actually a subdirectory. This is the only difference between a file and directory

entry (shortly, the way FAT12 handles subdirectories is discussed).

The Time and Date Stamp: The “time stamp” and “date stamp” fields

contain the time and date when the file that the directory entry describes was last revised.

Figure 4 and figure 5 describe the bits found in the fields.

10

Figure 4: The Time Stamp Field

Figure 5: The Date stamp Field

The First Cluster of a File: As mentioned earlier, DOS breaks up memory

into clusters, which are a number of sectors. Each cluster is described by a unique

number. The number that describes the cluster that the file resides in is found in the next

field of the 32 byte directory entry. When a file is too large to be stored in one cluster, the

starting cluster is placed in this field. The file allocation table is then used to locate the

rest of the clusters that contain the file (more on this later).

11

File Size: The file size is placed in the last field of the directory entry. It is

stored in two two byte packages, or words. The least significant word is stored first,

while the most significant word is stored second.

Subdirectories

As noted earlier, a subdirectory entry is flagged by the “subdirectory” bit in the

“attribute” byte. The cluster that the “first cluster “ field describes is the memory locations

that store the subdirectory information. The subdirectory information is laid out almost

exactly like the root directory using the 32 byte descriptions. When subdirectories are

created though, two entries are created that can never be deleted: the “.” and “..” entries.

The “.” entry points to the current subdirectory; the “first cluster” field points to the

cluster of the subdirectory. The “..” entry points to the parent directory. If the parent

directory is the root directory, the entry for the “first cluster” field is a zero.

The File Allocation Table (FAT)

 When DOS is asked to retrieve the contents of a file, it must know which clusters

the file is located in. If a file is 20 kilobytes long, and the cluster size is 4 kilobytes, five

clusters are needed to contain the file. These clusters may not be in sequence because the

number of clusters needed to store a file may be more than the largest string of sequential

clusters. The file allocation table is designed to overcome this obstacle.

The file allocation table is basically a linked list of clusters. The table consists of

twelve bit entries, one for each cluster of memory. Incidentally, the length of the entries in

bits is the suffix of the FAT12 designation. When DOS is asked to retrieve a file, DOS

first looks at the directory entry for the file. The “first cluster number” field points to the

12

first cluster that the file is stored in. This data is then retrieved. DOS then looks at the

entry in the FAT table for the corresponding cluster. If the number in this entry is not a

special number (special numbers are found in Table 7), the number stored is the number

corresponding to the next cluster that the file is stored in. Once DOS finds a FF8h or

greater in a FAT12 field, DOS knows that the cluster is the last cluster in the linked list.

Figure 6 illustrates the linked list concept. Lastly, when DOS searches for a cluster to

place a file in, it looks for the zero entries in the FAT.

Table 7: The Special Entries in a FAT

Code Meaning
000h Cluster is available

FF0h-FF6h Reserved cluster
FF7h Bad cluster

FF8h-FFFh Last cluster in file

Figure 6: The FAT Linked List

13

The first two entries in the FAT are reserved for special assignments, not cluster

assignments. The “media descriptor” field found in the boot sector is also found in the

first byte of the FAT. The rest of the reserved bytes contain 255.

Limitations of FAT12

The FAT12 file system is fairly efficient, and works very well for its age, but it still

has many limitations.

8.3 Filenames

8.3 filenames are filenames with a maximum of eight characters, a period, and an

extension of three character. This limitation is very cumbersome because the filenames do

not describe a file’s contents very well. For example, the first quarter’s sales report of

1997 for a company must be describe by something like Q1SALE97.EXC. This may

make sense now, but two years from now, and in a directory with fifty other files, this

name does a poor job in describing the file.

8 Megabyte Limit

The 8 Megabyte limit is caused by a number of factors. First, the twelve bit entry

to the FAT limits the size. Twelve bits have a total of 4096 unique combinations of ones

and zeros. Since each entry must have a number corresponding to it that is totally unique,

there can be only 4096 clusters (actually the special numbers, such as FFFh used to denote

the end of the FAT linked list, drop this number slightly). Also, only four sectors are

allocated per cluster. So:

4096 clusters * 4 sectors/cluster * 512 bytes/sector = 8 Megabytes

14

FAT12 set a maximum of 4 sectors per cluster. When a file is allocated to a cluster of

memory, it gets a cluster of memory. Even if the file was 1 byte long, a whole cluster of

memory is allocated. As a result, if the cluster size was 2048 bytes, 2047 bytes will go

unused. If the size of a cluster is decrease to 2 sectors per cluster, or 1024 bytes, less

memory would be wasted, but the maximum amount of memory that could have a unique

cluster number goes down to 4 Megabytes. Plus, DOS must traverse the FAT linked list

to find the locations of the file fragments, then accesses that memory. If the cluster size

was cut in half, the number of clusters that would have to be accessed is doubled. This

leads to a slower performance in DOS.

Fragmentation of Files

The fragmentation of a file is when the file is stored in clusters that are not

sequential. Figure 6, found earlier in this paper, illustrates file fragmentation. If the

clusters that need to be accessed are sequential, the read/write heads of the disk drive only

needs to move minute amounts. Fragmented clusters, on the other hand, cause the heads

of the disk drive to move all over the disk to retrieve each cluster of information.

Therefore, more time is required to move the head to non-sequential clusters than to

sequential clusters. DOS provides a utility program to fix the fragmentation, but this

cannot be done automatically when a file is fragmented. Plus, this utility takes a while to

execute.

15

FAT16

DOS 3.0

Microsoft realized that the 8 Megabyte barrier must be overcome to handle the

hard disk drives that were starting to be installed in computers. As a result, Microsoft

released DOS 3.0. This version of DOS had FAT16, as well as FAT12. FAT16 was set

up exactly like FAT12, except the file allocation table had entries that were sixteen bits in

length. By adding four more bits, the number of unique clusters that were available were

65,536 clusters. If less than 4096 clusters were needed, FAT12 was used. If there were

more than 4096 clusters, FAT16 was used.

Even thought the number of clusters possible were increased by a factor of sixteen,

4K to 64K, the maximum number of bytes in a volume was raised to only 32 megabytes.

The problem existed in a low level system call to retrieve a sector of information. This

function had a sixteen bit number passed to it to retrieve a sector. Since there are only

65,536 distinct 16-bit values, only 65,536 x 512, or 32 megabytes, of information could

have a unique sector number.

DOS 4.0

Once the 32 megabyte envelope was being threatened by newer hard drives,

Microsoft released DOS 4.0. In DOS 4.0, the low level system function to retrieve a

sector was changed to accept a 32-bit value. Now, DOS could handle up to 2 gigabytes in

a single volume. The reason for the 2 gigabyte limit in size of a volume is not a fault in

DOS, it is a fault in existing programs. Most programs assume that the cluster size can be

fit into a 16-bit number because the FAT was 16 bits long. Since FAT16 can handle up to

16

65,536 unique clusters, the cluster size is just the quotient of the disk size and 65,536

rounded up to a power of two. Table 8 shows disk sizes with the minimum cluster size.

Notice, a disk drive capacity of more than 2 gigabytes has to have exactly 65,536 bytes in

a cluster; 65,535 is the largest number that can be represented by 16 bits.

Table 8: Disk Sizes and Cluster Sizes

Sectors per Cluster Cluster Size
Disk Size Decimal Binary Decimal Binary

Less than 128 MB 4 0000 0100 2K 0000 1000 0000 0000
Less than 256 MB 8 0000 1000 4K 0001 0000 0000 0000
Less than 512 MB 16 0001 0000 8K 0010 0000 0000 0000
Less than 1GB 32 0010 0000 16K 0100 0000 0000 0000
Less than 2 GB 64 0100 0000 32K 1000 0000 0000 0000
Less than 4 GB 128 1000 0000 64K Error with Programs
More than 8 GB 256 Error in DOS

If the companies that wrote the programs that assume 16-bit cluster sizes were to

rewrite their code, DOS itself would have a maximum volume size of 4 gigabytes. This is

caused by the “sectors per cluster” field found in the BPB. This field is 8-bits long; 255 is

the largest number that can be represented. A disk drive of more 4 gigabytes or more

would require 256 sectors per cluster.

VFAT

VFAT (virtual file allocation table) is the file allocation system used by Widows

95. This file system allows for long file names, accepting virtually any character. VFAT is

also backwards compatible with DOS and most DOS based programs. VFAT does this by

cleverly utilizing the attribute field in the 32-byte directory entry.

17

Through testing, Microsoft found that if a directory entry was marked with

attributes of read-only, hidden, system, and volume name (an attribute value of 0Fh),

DOS, and most programs, simply ignore the entry. DOS ignores the entry because it is

impossible for a file to have this combination of attributes.

When a file is saved, VFAT first truncates the filename to the first six letters, a

tilde, and a number. The number is usually a one, but if a file already exits with the same

name, the number is incremented to two, then three, etc.. This name is then stored as a

32-bit directory entry. This version of the directory entry is the entry that DOS sees. The

full filename is then placed in other 32-bit directory entries located directly in front of the

short filename entry. The format for these directory entries are different than normal

entries. The format is found in Table 9.

Table 9: The Long Filename Directory Entry

Byte Number Meaning
00h Sequence byte

 Bits 0-4: Sequence number
 Bit 5: 0
 Bit 6: 1 = final Component
 Bit 7: 0

01h-0Ah First 5 characters
0Bh File attribute
0Ch Type indicator
0Dh Checksum

0D-18h Next 6 characters
19h-1Ch Starting cluster number (always

0)
1c-1Fh Next 2 characters

Notice that only thirteen characters in the filename can be stored in one 32-bit

directory entry. As a result, up two ten long filename directory entries are used to store

the filename (to get a 128 character filename). VFAT just uses the minimum number of

18

entries to save memory. If the filename is less than six characters long, a long filename

entry is still placed before the short entry. It does this because the long filename accepts

characters that the short directory entry does not.

The “Sequence” field in the long filename directory entry contains the number of

the segment of the filename that the long directory entry contains. This number is in the

first 5 bits. A one is placed in the sixth bit if the directory entry is the last entry. The next

ten bytes contain five characters from the filename. Ten bytes are required because the

characters are stored using Unicode; two bytes are required for each character. The

“attribute” field follows. This field must be in the exact same place as the “attribute” field

in the short filename directory entry because the 0Fh must be found there. When DOS or

an MS- DOS program encounters a 0Fh in the “attribute” field, it ignores the entry. The

next field is the “type indicator”. This is always zero.

When a file is created in Windows 95, and then is deleted in DOS, DOS does not

know the long filename directory entries exist for the file being deleted. As a result, these

directory entries called orphans, are just left there. These orphans can build up to a sizable

amount. This is where the “checksum” field in the long filename directory entry is

important. The “checksum” field in the long filename directory entry contains a number

that is the sum of a few bits location from the next directory entry modulated with 256.

With this field, a utility program can get rid of these orphans by checking the “checksum”

field and the next directory entry.

The next twelve bytes contain the next six characters in the filename. After that,

the “starting cluster” field is found. Since the “starting cluster” field in the short filename

directory entry is already filled with the starting cluster number of the file the entry points

19

to, this field is just set to zero. Lastly, the last four bytes contain the next two characters

of the filename.

Drawbacks and Limitations

Maximum Number of Files on the Root Directory: As is the case with

FAT12 and FAT16, the root directory is fixed. This limitation is even more detrimental

for the VFAT file system because up to eleven directory entries could be used for a single

file.

Orphan Long Filename Directory Entries: As previously mentioned,

orphan directory entries are caused by DOS when it deletes a file created or modified by

Windows 95. These orphans can take up some disk space, but with a 1.5 Gigabyte hard

drive, the 32 bytes per entry is not very big. Where these orphans can make the most

mess is in the root directory. The root directory is fixed in size. If the orphans build up

too much, a file may not be able to be saved in the root directory.

FAT32

FAT32 is the latest version of the FAT file system. Microsoft quietly released this

version in their OEM Service Pack 2. As a result, only new computers will contain this

file system in their version of Windows 95. FAT32 finally raises the 2 gigabyte barrier to

2 terabytes. It accomplishes this by having 32 bit FAT entries, and by modifying the BIOS

parameter block (BPB) found in the boot sector.

20

32 Bit FAT Entries

By expanding the 16 bit FAT entry to 32 bits, a whopping 4,294,967,296 clusters

can have unique names. By increasing the number of clusters that can be unique, smaller

cluster sizes can be made for the very large hard drives. Table 9 shows the cluster sizes

that VFAT calls for with relation to the hard drive size. With 32 bits, a hard drive of 2

terabytes can have a cluster size of one sector, but FAT32 calls for a larger cluster size. It

calls for larger clusters keep the speed in retrieving a file low; the smaller the cluster size,

the more FAT entries that have to be retrieved.

Table 9: The Disk Size and the Cluster Size in a FAT32 File System

Disk Size Number of Sectors
per Cluster

Cluster size
in Bytes

less than 8 GB 8 4K
Less than 16 GB 16 8K
Less than 32 GB 32 16K
More than 32 GB 64 32K

Because the FAT entries are changed from 16 to 32 bits, the “starting cluster” field

in the directory entries must be expanded to 32 bits. Microsoft has been gracious enough

to give up two of its reserved bytes in the directory entries to accommodate the two extra

bytes needed.

Root Directory Modification

In FAT32, Microsoft finally made the root directory dynamic in size like the

subdirectories. FAT32 simply stores the root directory in a cluster somewhere. The exact

cluster number is stored in the BPB.

BPB Modification

21

The BPB only needed to be modified to accommodate the larger numbers of

sectors and cluster. Microsoft decided, though, that while they were modifying the BPB

anyway, they could add a few more fields. Table 10 shows the new structure.

Table 10: The BPB in the FAT32 File System

Address Offset Description Length in Bytes
00h Bytes per sector 2
02h Sectors per cluster 1
03h Reserved sector 2
05h Number of FATs 1
06h Number of root directory entries 2
08h Number of sectors in the volume 2
0Ah Media descriptor 1
0Bh Sectors per FAT 2
0Dh Sectors per track 2
0Fh Read/write heads 2
11h Number of hidden sectors low 2
13h Number of hidden sectors high 2
15h Total sectors low 2
17h Total sectors high 2
19h Sectors per FAT low 2
1Bh Sectors per FAT high 2
1Dh Mirror flags 2
1Fh File system version 2
21h First cluster of root directory low 2
23h First cluster of root directory high 2
25h File system information sector 2
27h Backup boot sector location 2
29h Reserved 12

The most significant field that was added was the “root directory starting cluster

low and high” fields. This field actually stores the cluster number of the root directory.

Now, the root directory is not fixed in size; actually, it is exactly like a subdirectory. With

this modification, there is no limit to the number of files that can be stored in the root

directory.

22

The first nine fields of the new BPB are exactly the same fields as the original

BPB. The only difference is that the “total sectors” and “sectors per FAT” fields contain

zeros. This is because these fields are too small to hold 32 bit information. Microsoft has

the additional fields in the BPB handle this information. The “big total sectors low and

high” fields contain the real information on the total sectors in the volume. The same

concept applies to the “big sectors per FAT low and high” fields.

Another feature of the FAT32 file system is that the program can access each copy

of the FAT individually. This is called FAT mirroring. This is useful because it allows

better error recovery when a bad sector is detected in one of the FATs. The “BPB

extension flag” contains the active FAT table in the lower four bits. These bits have

meaning only if the eighth bit is set. The other bits in the field are reserved.

The “file system version” field contains the version of the file system used. The

high byte is the major version number, and the low byte is the minor version number.

Lastly, the “backup boot sector” field contains the location of a backup boot sector, if

there is one. It there is no backup boot sector, a 0FFFFh is found there.

Limitations

Compatibility: The biggest limitation of FAT32 is that it is not backwards

compatible. This is a result of the larger size of the FAT entries. Many FAT16 low level

disk functions fail, causing this incompatibility. Of course, FAT16 can be read by FAT32.

If a disk is partitioned into less than 512 Megabyte partitions, FAT32 is not used. This

way, a FAT16 partition can be placed on a hard drive to run the non-FAT32 compatible

programs.

23

Upgrade: As mentioned earlier, FAT32 is offered in Microsoft’s OEM

Service Pack 2. Unfortunately, it is not available in an Windows 95 upgrade. FAT32 will

be offered in the upcoming Windows 97 release.

Conclusion

FAT12 is a file system that was developed twenty years ago for Microsoft’s

Standalone Disk Basic interpreter. This system was more than adequate then, but as

computer disk drive sizes increased with leaps and bounds, FAT12 started to lag. After

many modifications, and years, FAT32 was produced. With up to a 2 Terabyte volume

size, this is the most advanced FAT offered by Microsoft. Surprisingly, with only a few

ingenious modifications, the underlying structure of the FAT file system is preserved. This

is a result of the need for compatibility, but FAT32 does not sacrifice much efficiency for

this compatibility. This illustrates the power of the FAT file system. Of coarse, in just a

few years, this FAT32 system will probably be obsolete. FAT evolution continues.

24

Appendix A: The Bibliography

25

“BPB (FAT32).” http://www.microsoft.com/msdn/sdk/platforms/doc/sdk/win32
/95guide/fat32/sec/far32_37.htm.

“FAT Mirroring.” http://www.microsoft.com/msdn/sdk/platforms/doc/sdk
/win32/95guide/src/far32ovr_3.htm.

Prosise, Jeff. “Can VFAT Handle Large Disks?” PC Magazine 10 October 1995:
345-350.

Prosise, Jeff. “How Windows 95 Stores Long Filenames.” PC Magazine 25 June
1996: 217-218.

Prosise, Jeff. “Is VFAT Ready for Prime Time?” PC Magazine 13 June 1995:
247-253.

Rigney, Steve. “The Long and Short of Windows 95 Filenames.” PC Magazine
10 October 1995: 369-370.

Simon, Barry. “An Enhanced File System for Windows 95.” PC Magazine 8 April
1997: 279-280.

“The FAT32 File Sytem.” http://www.microsoft.com/windows/pr/fat32.htm.

Tischer, Michael. PC Intern: System Programming Grand Rapids: Abacus, 1992

“Windows 95 FAT System Expands to Handle Terabyte Hard Disks.”
http://www.microsoft.com/syspro/technet/tnnews/webnews/w950617.htm.

