
Memory Management in Linux

Desktop Companion to the Linux Source Code

by Abhishek Nayani
Mel Gorman & Rodrigo S. de Castro

Linux-2.4.19,
Version 0.4, 25 May ‘02

ii

Copyright c© 2002 Abhishek Nayani. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation Li-
cense, Version 1.1 or any later version published by the Free Software Foundation;
with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license is included in the section entitled ”GNU Free Docu-
mentation License”.

Contents

Preface xi

1 Initialization 1
1.1 Memory Detection . 1

1.1.1 Method E820H . 1
1.1.2 Method E801H . 3
1.1.3 Method 88H . 3

1.2 Provisional GDT . 4
1.3 Activating Paging . 4

1.3.1 Significance of PAGE OFFSET 4
1.3.2 Provisional Kernel Page Tables 5
1.3.3 Paging . 8

1.4 Final GDT . 9
1.5 Memory Detection Revisited 10

1.5.1 Function setup arch() 10
1.5.2 Function setup memory region() 17
1.5.3 Function sanitize e820 map() 17
1.5.4 Function copy e820 map() 17
1.5.5 Function add memory region() 19
1.5.6 Function print memory map() 19

1.6 NUMA . 20
1.6.1 struct pglist data . 20

1.7 Bootmem Allocator . 22
1.7.1 struct bootmem data 22
1.7.2 Function init bootmem() 23
1.7.3 Function free bootmem() 25
1.7.4 Function reserve bootmem() 26
1.7.5 Function alloc bootmem() 27
1.7.6 Function free all bootmem() 32

1.8 Page Table Setup . 34
1.8.1 Function paging init() 34

iii

iv CONTENTS

1.8.2 Function pagetable init() 36
1.8.3 Fixmaps . 40

1.8.3.1 Macro fix to virt() 41
1.8.3.2 Function set fixmap() 42
1.8.3.3 Function fixrange init() 43

1.8.4 Function kmap init() 44
1.9 Memory Zones . 44

1.9.1 Structures . 45
1.9.1.1 struct zone struct 45
1.9.1.2 struct page 47

1.9.2 Function free area init() 48
1.9.3 Function build zonelists() 54
1.9.4 Function mem init() 55

1.10 Initialization of Slab Allocator 58
1.10.1 Function kmem cache init() 58
1.10.2 Function kmem cache sizes init() 59

2 Physical Memory Allocation 61
2.1 Zone Allocator . 61
2.2 Buddy System . 61

2.2.0.1 struct free area struct 62
2.2.1 Example . 62

2.2.1.1 Allocation . 63
2.2.1.2 De-Allocation 64

2.2.2 Function free pages ok() 65
2.2.3 Function alloc pages() 71
2.2.4 Function rmqueue() . 75
2.2.5 Function expand() . 78
2.2.6 Function balance classzone() 79

3 Slab Allocator 83
3.1 Caches . 86

3.1.1 Cache Static Flags . 87
3.1.2 Cache Dynamic Flags 87
3.1.3 Cache Colouring . 88
3.1.4 Creating a Cache . 88

3.1.4.1 Function kmem cache create() 89
3.1.5 Calculating the Number of Objects on a Slab 95

3.1.5.1 Function kmem cache estimate() 95
3.1.6 Growing a Cache . 98

3.1.6.1 Function kmem cache grow() 99

CONTENTS v

3.1.7 Shrinking Caches . 102
3.1.7.1 Function kmem cache shrink() 103
3.1.7.2 Function kmem cache shrink locked() 104
3.1.7.3 Function kmem slab destroy() 105

3.1.8 Destroying Caches . 107
3.1.8.1 Function kmem cache destroy() 107

3.1.9 Cache Reaping . 110
3.1.9.1 Function kmem cache reap() 111

3.2 Slabs . 116
3.2.1 Storing the Slab Descriptor 117

3.2.1.1 Function kmem cache slabmgmt() 118
3.2.1.2 Function kmem find general cachep() 120

3.3 Objects . 121
3.3.1 Initializing Objects . 121

3.3.1.1 Function kmem cache init objs() 121
3.3.2 Allocating Objects . 123

3.3.2.1 Function kmem cache alloc() 124
3.3.2.2 Allocation on UP 125
3.3.2.3 Allocation on SMP 126

3.3.3 Macro kmem cache alloc one() 128
3.3.3.1 Function kmem cache alloc one tail() 129
3.3.3.2 Function kmem cache alloc batch() 131

3.3.4 Object Freeing . 132
3.3.4.1 Function kmem cache free() 132
3.3.4.2 Function kmem cache free() 133
3.3.4.3 Function kmem cache free() 134
3.3.4.4 Function kmem cache free one() 135
3.3.4.5 Function free block() 137
3.3.4.6 Function free block() 138

3.4 Tracking Free Objects . 138
3.4.1 kmem bufctl t . 138
3.4.2 Initialising the kmem bufctl t Array 139
3.4.3 Finding the Next Free Object 139
3.4.4 Updating kmem bufctl t 140

3.5 Per-CPU Object Cache . 140
3.5.1 Describing the Per-CPU Object Cache 140
3.5.2 Adding/Removing Objects from the Per-CPU Cache . 141
3.5.3 Enabling Per-CPU Caches 142

3.5.3.1 Function enable all cpucaches() 142
3.5.3.2 Function enable cpucache() 143
3.5.3.3 Function kmem tune cpucache() 144

vi CONTENTS

3.5.4 Updating Per-CPU Information 146
3.5.4.1 Function smp function all cpus() 147
3.5.4.2 Function do ccupdate local() 147

3.5.5 Draining a Per-CPU Cache 148
3.5.5.1 Function drain cpu caches() 148

3.6 Slab Allocator Initialization 149
3.6.1 Initializing cache cache 150

3.6.1.1 Function kmem cache init() 150
3.7 Interfacing with the Buddy Allocator 151

3.7.0.1 Function kmem getpages() 151
3.7.0.2 Function kmem freepages() 152

3.8 Sizes Cache . 152
3.8.1 kmalloc . 153
3.8.2 kfree . 154

4 Non-Contiguous Memory Allocation 157
4.1 Structures . 157

4.1.1 struct vm struct . 157
4.2 Allocation . 158

4.2.1 Function vmalloc() . 158
4.2.2 Function vmalloc() 158
4.2.3 Function get vm area() 160
4.2.4 Function vmalloc area pages() 161
4.2.5 Function alloc area pmd() 163
4.2.6 Function alloc area pte() 163

4.3 De-Allocation . 165
4.3.1 Function vfree() . 165
4.3.2 Function vmfree area pages() 166
4.3.3 Function free area pmd() 167
4.3.4 Function free area pte() 168

4.4 Read/Write . 169
4.4.1 Function vread() . 170
4.4.2 Function vwrite() . 171

5 Process Virtual Memory Management 173
5.1 Structures . 173

5.1.1 struct mm struct . 173
5.1.2 struct vm area struct 176

5.2 Creating a Process Address Space 177
5.2.1 Function copy mm() 177
5.2.2 Function dup mmap() 181

CONTENTS vii

5.3 Deleting a Process Address Space 185

5.3.1 Function exit mm() . 185

5.3.2 Function mmput() . 186

5.3.3 Function exit mmap() 187

5.4 Allocating a Memory Region 190

5.4.1 Function do mmap() 190

5.4.2 Function do mmap pgoff() 192

5.4.3 Function get unmapped area() 201

5.4.4 Function arch get unmapped area() 202

5.4.5 Function find vma prepare() 203

5.4.6 Function vm enough memory() 204

5.5 De-Allocating a Memory Region 206

5.5.1 Function sys munmap() 206

5.5.2 Function do munmap() 207

5.6 Modifying Heap . 210

5.6.1 Function sys brk() . 210

5.6.2 Function do brk() . 212

5.7 Unclassified . 214

5.7.1 Function remove shared vm struct() 214

5.7.2 Function remove shared vm struct() 215

5.7.3 Function lock vma mappings() 215

5.7.4 Function unlock vma mappings() 215

5.7.5 Function calc vm flags() 216

5.7.6 Function vma link list() 216

5.7.7 Function vma link rb() 217

5.7.8 Function vma link file() 217

5.7.9 Function vma link() 218

5.7.10 Function vma link() 218

5.7.11 Function vma merge() 219

5.7.12 Function find vma() 220

5.7.13 Function find vma prev() 221

5.7.14 Function find extend vma() 222

5.7.15 Function unmap fixup() 223

5.7.16 Function free pgtables() 225

5.7.17 Function build mmap rb() 226

5.7.18 Function insert vm struct() 227

5.7.19 Function insert vm struct() 227

viii CONTENTS

6 Demand Paging 229
6.0.1 Function copy cow page() 229
6.0.2 Function free pte() 229
6.0.3 Function free one pmd() 230
6.0.4 Function free one pgd() 230
6.0.5 Function check pgt cache() 231
6.0.6 Function clear page tables() 231
6.0.7 Function copy page range() 231
6.0.8 Function forget pte() 234
6.0.9 Function zap pte range() 234
6.0.10 Function zap pmd range() 235
6.0.11 Function zap page range() 236
6.0.12 Function follow page() 237
6.0.13 Function get page map() 238
6.0.14 Function get user pages() 238
6.0.15 Function map user kiobuf() 240
6.0.16 Function mark dirty kiobuf() 242
6.0.17 Function unmap kiobuf() 242
6.0.18 Function lock kiovec() 243
6.0.19 Function unlock kiovec() 245
6.0.20 Function zeromap pte range() 246
6.0.21 Function zeromap pmd range() 246
6.0.22 Function zeromap page range() 247
6.0.23 Function remap pte range() 248
6.0.24 Function remap pmd range() 248
6.0.25 Function remap page range() 249
6.0.26 Function establish pte() 250
6.0.27 Function break cow() 250
6.0.28 Function do wp page() 251
6.0.29 Function vmtruncate list() 252
6.0.30 Function vmtruncate() 253
6.0.31 Function swapin readahead() 254
6.0.32 Function do swap page() 255
6.0.33 Function do anonymous page() 257
6.0.34 Function do no page() 258
6.0.35 Function handle pte fault() 260
6.0.36 Function handle mm fault() 261
6.0.37 Function pmd alloc() 261
6.0.38 Function pte alloc() . 262
6.0.39 Function make pages present() 263
6.0.40 Function vmalloc to page() 263

CONTENTS ix

7 The Page Cache 265
7.1 The Buffer Cache . 265

8 Swapping 267
8.1 Structures . 267

8.1.1 swp entry t . 267
8.1.2 struct swap info struct 268

8.2 Freeing Pages from Caches . 269
8.2.1 LRU lists . 269
8.2.2 Function shrink cache() 271
8.2.3 Function refill inactive() 278
8.2.4 Function shrink caches() 279
8.2.5 Function try to free pages() 281

8.3 Unmapping Pages from Processes 283
8.3.1 Function try to swap out() 283
8.3.2 Function swap out pmd() 288
8.3.3 Function swap out pgd() 291
8.3.4 Function swap out vma() 292
8.3.5 Function swap out mm() 294
8.3.6 Function swap out() 296

8.4 Checking Memory Pressure 298
8.4.1 Function check classzone need balance() 298
8.4.2 Function kswapd balance pgdat() 298
8.4.3 Function kswapd balance() 300
8.4.4 Function kswapd can sleep pgdat() 300
8.4.5 Function kswapd can sleep() 301
8.4.6 Function kswapd() . 301
8.4.7 Function kswapd init() 304

8.5 Handling Swap Entries . 304
8.5.1 Function scan swap map() 304
8.5.2 Function get swap page() 307
8.5.3 Function swap info get() 309
8.5.4 Function swap info put() 310
8.5.5 Function swap entry free() 311
8.5.6 Function swap free() 312
8.5.7 Function swap duplicate() 312
8.5.8 Function swap count() 313

8.6 Unusing Swap Entries . 315
8.6.1 Function unuse pte() 315
8.6.2 Function unuse pmd() 316
8.6.3 Function unuse pgd() 317

x CONTENTS

8.6.4 Function unuse vma() 318
8.6.5 Function unuse process() 319
8.6.6 Function find next to unuse() 320
8.6.7 Function try to unuse() 321

8.7 Exclusive Swap Pages . 327
8.7.1 Function exclusive swap page() 327
8.7.2 Function can share swap page() 328
8.7.3 Function remove exclusive swap page() 329
8.7.4 Function free swap and cache() 331

8.8 Swap Areas . 333
8.8.1 Function sys swapoff() 333
8.8.2 Function get swaparea info() 336
8.8.3 Function is swap partition() 338
8.8.4 Function sys swapon() 339
8.8.5 Function si swapinfo() 348
8.8.6 Function get swaphandle info() 350
8.8.7 Function valid swaphandles() 351

8.9 Swap Cache . 353
8.9.1 Function swap writepage() 353
8.9.2 Function add to swap cache() 353
8.9.3 Function delete from swap cache() 355
8.9.4 Function delete from swap cache() 355
8.9.5 Function free page and swap cache() 356
8.9.6 Function lookup swap cache() 357
8.9.7 Function read swap cache async() 357

A Intel Architecture 361
A.1 Segmentation . 361
A.2 Paging . 361

B Miscellaneous 363
B.1 Page Flags . 363
B.2 GFP Flags . 366

GNU Free Documentation License 369

Bibliography 377

Index 378

Preface

This document is a part of the Linux Kernel Documentation Project (http:
//freesoftware.fsf.org/lkdp) and attempts to describe how memory ma-
nagement is implemented in the Linux kernel. It is based on the Linux-2.4.19
kernel running on the intel 80x86 architecture. The reader is assumed to
have some knowledge of memory management concepts and the intel 80x86
architecture. This document is best read with the kernel source by your side.

Acknowledgements

While preparing this document, I asked for reviewers on #kernelnewbies

on irc.openprojects.net. I got a lot of response. The following individuals
helped me with corrections, suggestions and material to improve this paper.
They put in a big effort to help me get this document into its present shape.
I would like to sincerely thank all of them. Naturally, all the mistakes you’ll
find in this book are mine.

Martin Devera, Joseph A Knapka, William Lee Irwin III,
Rik van Riel, David Parsons, Rene Herman, Srinidhi K.R.

xi

http://freesoftware.fsf.org/lkdp
http://freesoftware.fsf.org/lkdp

xii PREFACE

___wait_on_page

page_waitqueue sync_page

__alloc_pages

rmqueue balance_classzone

add_to_swap_cache

add_to_page_cache_unique swap_freeswap_duplicate

__add_to_page_cache lru_cache_add __find_page_nolock

shrink_cache

unlock_page

__remove_inode_page

swap_out

__free_pages

__lru_cache_del

__delete_from_swap_cache

swap_entry_free swap_info_put swap_info_get

remove_page_from_inode_queue remove_page_from_hash_queue

swap_out_mm

swap_out_vmafind_vma

shrink_caches

refill_inactivekmem_cache_reap

kswapd_balance_pgdat

check_classzone_need_balance try_to_free_pages

mark_page_accessed

activate_page

activate_page_nolock

kswapd_balance

__free_pages_ok

lru_cache_del

kswapd

kswapd_can_sleep

add_page_to_hash_queueadd_page_to_inode_queue

try_to_swap_out

get_swap_page set_page_dirty

scan_swap_map

kswapd_can_sleep_pgdat

out_of_memory

swap_out_pgd

select_bad_process

badness

wait_on_page

kmem_cache_free

__kmem_cache_free

kmem_cache_free_one

kmem_slab_destroy

kmem_freepages

free_pages swap_out_pmd

kswapd_init

swap_setup

oom_kill

oom_kill_task

Figure 1: VM Callgraph [5] (magnify to get clear view)

Chapter 1

Initialization

1.1 Memory Detection

The first thing the kernel does (which is related to memory management)
is find the amount of memory present in the system. This is done in the
file arch/i386/boot/setup.S between the lines 281–382. Here it uses three
routines, e820h to get the memory map, e801h to get the size and finally
88h which returns 0–64MB, all involving int 0x15. They are executed one
after the other, regardless of the success or failure of any one of them. This
redundancy is allowed as this is a very inexpensive one-time only process.

1.1.1 Method E820H

This method returns the memory classified into different types and also allows
memory holes. It uses interrupt 0x15, function E820h (=AX) after which
the method has been named. Its description and function is listed below:

AX = E820h

EAX = 0000E820h

EDX = 534D4150h (’SMAP’)

EBX = continuation value or 00000000h

to start at beginning of map

ECX = size of buffer for result,

in bytes (should be >= 20 bytes)

ES:DI -> buffer for result

Return:

CF clear if successful

EAX = 534D4150h (’SMAP’)

1

arch/i386/boot/setup.S

2 CHAPTER 1. INITIALIZATION

ES:DI buffer filled

EBX = next offset from which to copy

or 00000000h if all done

ECX = actual length returned in bytes CF set on error

AH = error code (86h)

The format of the return buffer is:

Offset Size Description

00h QWORD base address

08h QWORD length in bytes

10h DWORD type of address range

The different memory types are:

01h memory, available to OS

02h reserved, not available

(e.g. system ROM, memory-mapped device)

03h ACPI Reclaim Memory

(usable by OS after reading ACPI tables)

04h ACPI NVS Memory (OS is required to save

this memory between NVS sessions)

other not defined yet -- treat as Reserved

This method, uses the above routine to fill the memory pointed to by
E820MAP1 (address = 0x2d0), with the list of usable address/size duples
(max 32). Eg. this routine returns the following information on my system
(I modified the source to print the unmodified map).

Address Size Type

0000000000000000 000000000009fc00 1

000000000009fc00 0000000000000400 1

00000000000f0000 0000000000010000 2

00000000ffff0000 0000000000010000 2

0000000000100000 000000000bf00000 1

This information in slightly more readable form:

1Declared in include/asm/e820.h

include/asm/e820.h

1.1. MEMORY DETECTION 3

Starting address Size Type

0K 639K Usable RAM

639K 1K Usable RAM

960K 64K System ROM

4G-64k 64K System ROM

1M 191M Usable RAM

This is later converted into a more usable format in sanitize e820 map().

1.1.2 Method E801H

This routine will return the memory size in 1K chunks for the memory range
1MB to 16MB and in 64K chunks above 16MB. The description of the inter-
rupt used is:

AX = E801h

Return:

CF clear if successful

AX = extended memory between 1M and 16M,

in K (max 3C00h = 15MB)

BX = extended memory above 16M, in 64K blocks

CX = configured memory 1M to 16M, in K

DX = configured memory above 16M, in 64K blocks

CF set on error

The size calculated is stored in the address location 0x1e0h.

1.1.3 Method 88H

This routine is also used to find the amount of memory present in the system.
This is expected to be successful in case the above routine fails as this function
is supported by most BIOSes. It returns up to a maximum of 64MB or 16MB
depending on the BIOS. The description of the interrupt used is:

AH = 88h

Return:

CF clear if successful

4 CHAPTER 1. INITIALIZATION

AX = number of contiguous KB starting

at absolute address 100000h

CF set on error

AH = status

80h invalid command (PC,PCjr)

86h unsupported function (XT,PS30)

The size calculated is stored in the address location 0x2h.

1.2 Provisional GDT

Before entering protected mode, the global descriptor table has to be setup.
A provisional or temporary gdt is created with two entries, code and data
segment, each covering the whole 4GB address space. The code2 that loads
the gdt is:

/** /arch/i386/boot/setup.S **/

xorl %eax, %eax # Compute gdt_base

movw %ds, %ax # (Convert %ds:gdt to a linear ptr)

shll $4, %eax

addl $gdt, %eax

movl %eax, (gdt_48+2)

lgdt gdt_48 # load gdt with whatever is

appropriate

where the variable gdt contains the table, gdt 48 contains the limit and
the address of gdt. The code above gets the address of gdt and fills it in the
address part of the gdt 48 variable.

1.3 Activating Paging

1.3.1 Significance of PAGE OFFSET

The value of PAGE OFFSET is 0xc0000000 which is 3GB. The linear address
space of a process is divided into two parts:

2In file arch/i386/kernel/head.S

arch/i386/kernel/head.S

1.3. ACTIVATING PAGING 5

• Linear addresses from 0x00000000 to PAGE OFFSET-1 can be ad-
dressed when the process is either in user or kernel mode.

• Linear addresses from PAGE OFFSET to 0xffffffff can be addressed
only when the process is in kernel mode. This address space is common
to all the processes.

The address space after PAGE OFFSET is reserved for the kernel and
this is where the complete physical memory is mapped (eg. if a system
has 64mb of RAM, it is mapped from PAGE OFFSET to PAGE OFFSET
+ 64mb). This address space is also used to map non-continuous physical
memory into continuous virtual memory.

1.3.2 Provisional Kernel Page Tables

The purpose of this page directory is to map virtual address spaces 0–8mb
and PAGE OFFSET–(PAGE OFFSET + 8mb) to the physical address space
of 0–8mb. This mapping is done so that the address space out of which the
code is executing, remains valid. Joseph A Knapka has explained this much
better, from which I quote:

• All pointers in the compiled kernel refer to addresses > PAGE -
OFFSET. That is, the kernel is linked under the assumption that its
base address will be start text (I think; I don’t have the code on hand
at the moment), which is defined to be PAGE OFFSET+(some small
constant, call it C).

• All the kernel bootstrap code is linked assuming that its base address is
0+C.

head.S is part of the bootstrap code. It’s running in protected mode with
paging turned off, so all addresses are physical. In particular, the instruction
pointer is fetching instructions based on physical address. The instruction
that turns on paging (movl %eax, %cr0) is located, say, at some physical
address A.

As soon as we set the paging bit in cr0, paging is enabled, and starting at
the very next instruction, all addressing, including instruction fetches, pass
through the address translation mechanism (page tables). IOW, all address
are henceforth virtual. That means that

1. We must have valid page tables, and

2. Those tables must properly map the instruction pointer to the next in-
struction to be executed.

6 CHAPTER 1. INITIALIZATION

That next instruction is physically located at address A+4 (the address
immediately after the ”movl %eax, %cr0” instruction), but from the point of
view of all the kernel code – which has been linked at PAGE OFFSET – that
instruction is located at virtual address PAGE OFFSET+(A+4). Turning
on paging, however, does not magically change the value of EIP. The CPU
fetches the next instruction from ***virtual*** address A+4; that instruction
is the beginning of a short sequence that effectively relocates the instruction
pointer to point to the code at PAGE OFFSET+A+(something).

But since the CPU is, for those few instructions, fetching instructions
based on physical addresses ***but having those instructions pass through
address translation***, we must ensure that both the physical addresses and
the virtual addresses are :

1. Valid virtual addresses,and

2. Point to the same code.

That means that at the very least, the initial page tables must map virtual
address PAGE OFFSET+(A+4) to physical address (A+4), and must map
virtual address A+4 to physical address A+4. This dual mapping for the first
8MB of physical RAM is exactly what the initial page tables accomplish. The
8MB initially mapped is more or less arbitrary. It’s certain that no bootable
kernel will be greater than 8MB in size. The identity mapping is discarded
when the MM system gets initialized.

The variable swapper pg dir contains the page directory for the kernel, which
is statically initialized at compile time. Using “.org” directives of the assem-
bler, swapper pg dir is placed at address 0x001010003, similarly the first page
table entry pg0 is placed at 0x00102000 and the second page table entry pg1
at 0x00103000. The page table entry pg1 is followed by empty zero page4 at
0x00103000, whose only purpose is to act as a marker to denote the end, in
a loop used to initialize the page tables. The swapper pg dir is as follows:

/** /arch/i386/kernel/head.S **/

.org 0x1000

ENTRY(swapper_pg_dir)

.long 0x00102007

.long 0x00103007

3The kernel starts at 0x00100000 == 1MB, so .org 0x1000 is taken w.r.t the start of
the kernel

4It is also used to store the boot parameters and the command line of the kernel.

1.3. ACTIVATING PAGING 7

.fill BOOT_USER_PGD_PTRS-2,4,0

/* default: 766 entries */

.long 0x00102007

.long 0x00103007

/* default: 254 entries */

.fill BOOT_KERNEL_PGD_PTRS-2,4,0

In the above structure:

• First and second entries point to pg0 and pg1 respectively.

• BOOT USER PGD PTRS5 gives the number of page directory entries
mapping the user space (0–3GB) which is 0x300 (768 in decimal). This
is used to initialize the rest of the entries mapping upto 3GB to zero.

• Page tables mapping PAGE OFFSET to (PAGE OFFSET + 8mb) are
also initialized with pg0 and pg1 (lines 386–387).

• BOOT KERNEL PGD PTRS gives the number of page directory en-
tries mapping the kernel space (3GB–4GB). This is used to initialize
the rest of remaining page tables to zero.

The page tables pg0 and pg1 are initialized in this loop:

/** /arch/i386/kernel/head.S **/

/* Initialize page tables */

movl $pg0-__PAGE_OFFSET,%edi /* initialize page tables */

movl $007,%eax /* "007" doesn’t mean with right

to kill, but PRESENT+RW+USER */

2: stosl

add $0x1000,%eax

cmp $empty_zero_page-__PAGE_OFFSET,%edi

jne 2b

In the above code:

1. Register EDI is loaded with the address of pg0.

2. EAX is loaded with the address + attributes of the page table entry.
The combination maps the first 4k, starting from 0x00000000 with the
attributes PRESENT+RW+USER.

5A macro defined in /include/asm-386/pgtable.h

8 CHAPTER 1. INITIALIZATION

3. The instruction “stosl” stores the contents of EAX at the address
pointed by EDI, and increments EDI.

4. The base address of the page table entry is incremented by 0x1000 (4k).
The attributes remain the same.

5. Check is made to see if we have reached the end of the loop by compar-
ing the address pointed to be EDI with the address of empty zero page.
If not, it jumps back to label6 2 and loops.

By the end of the loop, the complete 8mb will be mapped.

Note: In the above code, while accessing pg0, swapper pg dir and
other variables, they are addressed as pg0 - PAGE OFFSET, swap-
per pg dir - PAGE OFFSET and so on (ie. PAGE OFFSET is
being deducted). This is because the code (vmlinux) is actually
linked to start at address starting from PAGE OFFSET + 1mb
(0xc0100000). So all symbols have addresses above PAGE OFFSET,
eg. swapper pg dir gets the address 0xc0101000. Therefore to get
the physical addresses, PAGE OFFSET must be deducted from the
symbol address. This linking information is specified in the file
arch/i386/vmlinux.lds. Also to get a better idea, “objdump -D
vmlinux” will show you all the symbols and their addresses.

1.3.3 Paging

Paging is enabled by setting the most significant bit (PG) of the CR0 register.
This is done in the following code:

/** /arch/i386/kernel/head.S **/

/*

* Enable paging

*/

3:

movl $swapper_pg_dir-__PAGE_OFFSET,%eax

movl %eax,%cr3 /* set the page table pointer.. */

movl %cr0,%eax

orl $0x80000000,%eax

movl %eax,%cr0 /* ..and set paging (PG) bit */

jmp 1f /* flush the prefetch-queue */

6The char after 2 is a specifier which tells the assembler to jump forward or backward

arch/i386/vmlinux.lds

1.4. FINAL GDT 9

1:

movl $1f,%eax

jmp *%eax /* make sure eip is relocated */

1:

After enabling paged memory management, the first jump flushes the
instruction queue. This is done because the instructions which have been
already decoded (in the queue) will be using the old addresses. The sec-
ond jump effectively relocates the instruction pointer to PAGE OFFSET +
something.

1.4 Final GDT

After the paging has been enabled, the final gdt is loaded. The gdt now
contains code and data segments for both user and kernel. Along with these,
segments are defined for APM and space is left for TSSs and LDTs of pro-
cesses. Linux uses segments in a very limited way, ie. it uses the flat model,
in which segments are created for code and data addressing the full 4GB
memory space. The gdt is as follows:

/** /arch/i386/kernel/head.S **/

ENTRY(gdt_table)

.quad 0x0000000000000000 /*NULL descriptor */

.quad 0x0000000000000000 /*not used */

.quad 0x00cf9a000000ffff /*0x10 kernel 4GB code */

.quad 0x00cf92000000ffff /*0x18 kernel 4GB data */

.quad 0x00cffa000000ffff /*0x23 user 4GB code */

.quad 0x00cff2000000ffff /*0x2b user 4GB data */

.quad 0x0000000000000000 /*not used */

.quad 0x0000000000000000 /*not used */

/*

* The APM segments have byte granularity and their bases

* and limits are set at run time.

*/

.quad 0x0040920000000000 /*0x40 APM set up for bad BIOS’s

.quad 0x00409a0000000000 /*0x48 APM CS code*/

.quad 0x00009a0000000000 /*0x50 APM CS 16 code (16 bit)*/

.quad 0x0040920000000000 /*0x58 APM DS data*/

.fill NR_CPUS*4,8,0 /*space for TSS’s and LDT’s*/

10 CHAPTER 1. INITIALIZATION

1.5 Memory Detection Revisited

As we have previously seen, three assembly routines were used to detect
the memory regions/size and the information was stored in some place in
memory. The routine setup arch()7, which is called by start kernel() to do
architecture dependent initializations, is responsible for processing this in-
formation and setup up high level data structures necessary to do memory
management. The following are the functions and their descriptions in the
order they are called:

1.5.1 Function setup arch()

File: arch/i386/kernel/setup.c

This description only covers code related to memory management.

setup_memory_region();

This call processes the memory map and stores the memory layout informa-
tion in the global variable e820. Refer to section 1.5.2 for more details.

parse_mem_cmdline(cmdline_p);

This call will override the memory detection code with the user supplied
values.

#define PFN_UP(x) (((x) + PAGE_SIZE-1) >> PAGE_SHIFT)

#define PFN_DOWN(x) ((x) >> PAGE_SHIFT)

#define PFN_PHYS(x) ((x) << PAGE_SHIFT)

Description of the macros:

PFN UP
Returns the page frame number, after rounding the address to the next
page frame boundary.

PFN DOWN
Returns the page frame number, after rounding the address to the
previous page frame boundary.

7This routine is in the file arch/i386/kernel/setup.c

arch/i386/kernel/setup.c
arch/i386/kernel/setup.c

1.5. MEMORY DETECTION REVISITED 11

PFN PHYS
Returns the physical address for the given page number.

/*

* 128MB for vmalloc and initrd

*/

#define VMALLOC_RESERVE (unsigned long)(128 << 20)

#define MAXMEM (unsigned long)(-PAGE_OFFSET-VMALLOC_RESERVE)

#define MAXMEM_PFN PFN_DOWN(MAXMEM)

#define MAX_NONPAE_PFN (1 << 20)

Description of the macros:

VMALLOC RESERVE
Address space of this size (in the kernel address space) is reserved for
vmalloc, evaluates to 128MB.

MAXMEM
Gives the maximum amount of RAM that can be directly mapped by
the kernel. It evaluates to 896MB . In the above macro, -PAGE OFFSET
evaluates to 1GB (overflow of unsigned long).

MAXMEM PFN
Returns the page frame number of the maximum memory which can
be directly mapped by the kernel.

MAX NONPAE PFN
Gives the page frame number of the first page after 4GB. Memory
above this can be accessed only when PAE has been enabled.

Update: The definitions of both VMALLOC RESERVE and MAXMEM
have been shifted to include/asm-i386/page.h.

/*

* partially used pages are not usable - thus

* we are rounding upwards:

*/

start_pfn = PFN_UP(__pa(&_end));

The macro pa is declared in the file include/asm-i386/page.h, it re-
turns the physical address when given a virtual address. It just subtracts
PAGE OFFSET from the given value to do this. The identifier end is used
to represent the end of the kernel in memory. So the value that is stored in
start pfn is the page frame number immediately following the kernel.

include/asm-i386/page.h
include/asm-i386/page.h

12 CHAPTER 1. INITIALIZATION

/*

* Find the highest page frame number we have available

*/

max_pfn = 0;

for (i = 0; i < e820.nr_map; i++) {

unsigned long start, end;

/* RAM? */

if (e820.map[i].type != E820_RAM)

continue;

start = PFN_UP(e820.map[i].addr);

end = PFN_DOWN(e820.map[i].addr + e820.map[i].size);

if (start >= end)

continue;

if (end > max_pfn)

max_pfn = end;

}

The above code loops through the memory regions of type E820 RAM (usable
RAM) and stores the page frame number of the last page frame in max pfn.

/*

* Determine low and high memory ranges:

*/

max_low_pfn = max_pfn;

if (max_low_pfn > MAXMEM_PFN) {

If the system has memory greater than 896MB, the following code is used to
find out the amount of HIGHMEM.

if (highmem_pages == -1)

highmem_pages = max_pfn - MAXMEM_PFN;

The variable highmem pages is used to store the no. of page frames above
896mb. It is initialized to -1 at the time of definition, so we know that the
user has not specified any value for the highmem on the kernel command line
using the highmem=size option if it remains equal to -1. The highmem=size
option allows the user to specify the exact amount of high memory to use.
Check the function parse mem cmdline to see how it is set. So the above
code checks if the user has specified any value for the highmem, if not it
calculates the higmem by subtracting the last page frame of normal memory
from the total number of page frames.

if (highmem_pages + MAXMEM_PFN < max_pfn)

max_pfn = MAXMEM_PFN + highmem_pages;

1.5. MEMORY DETECTION REVISITED 13

This condition is used to adjust the value of max pfn when the sum of high-
mem pages and normal pages is less than the total no. of pages. This
happens when the user has specified lesser no. of highmem pages on the
kernel command line than there are in the system.

if (highmem_pages + MAXMEM_PFN > max_pfn) {

printk("only %luMB highmem pages available,

ignoring highmem size of %uMB.\n",

pages_to_mb(max_pfn - MAXMEM_PFN),

pages_to_mb(highmem_pages));

highmem_pages = 0;

}

This code is executed if the user specifies more no. of highmem pages than
there are in the system on the kernel command line. The above code will
print an error message and ignores the highmem pages.

max_low_pfn = MAXMEM_PFN;

#ifndef CONFIG_HIGHMEM

/* Maximum memory usable is what is directly addressable */

printk(KERN_WARNING "Warning only %ldMB will be used.\n",

MAXMEM>>20);

if (max_pfn > MAX_NONPAE_PFN)

printk(KERN_WARNING "Use a PAE enabled kernel.\n");

else

printk(KERN_WARNING "Use HIGHMEM enabled kernel");

#else /* !CONFIG_HIGHMEM */

If CONFIG HIGHMEM is not defined, the above code prints the amount of RAM
that will be used (which is the amount of RAM which is directly addressable
ie. max of 896mb). If the available RAM is greater than 4GB, then it prints
a message to use a PAE enabled kernel (which allows the use of 64GB of
memory in processors starting from pentium pro) else suggests to enable
HIGHMEM.

#ifndef CONFIG_X86_PAE

if (max_pfn > MAX_NONPAE_PFN) {

max_pfn = MAX_NONPAE_PFN;

printk(KERN_WARNING "Warning only 4GB will be used");

14 CHAPTER 1. INITIALIZATION

printk(KERN_WARNING "Use a PAE enabled kernel.\n");

}

#endif /* !CONFIG_X86_PAE */

#endif /* !CONFIG_HIGHMEM */

If CONFIG HIGHMEM was enabled but the system has RAM more than 4GB
and CONFIG X86 PAE was not enabled, it warns the user to enable it to use
memory more than 4GB.

} else {

if (highmem_pages == -1)

highmem_pages = 0;

It comes here if the amount of RAM in the system is less than 896mb. Even
here, the user has got the option to use some normal memory as highmem
(mainly for debugging purposes). So the above code checks to see if the user
wants to have any higmem.

#if CONFIG_HIGHMEM

if (highmem_pages >= max_pfn) {

printk(KERN_ERR "highmem size specified (%uMB)

is bigger than pages available (%luMB)!.\n",

pages_to_mb(highmem_pages),

pages_to_mb(max_pfn));

highmem_pages = 0;

}

If CONFIG HIGHMEM is enabled, the above code checks if the user specified
highmem size is greater than the amount of RAM present in the system.
This request gets completely ignored.

if (highmem_pages) {

if(max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){

printk(KERN_ERR "highmem size %uMB results in smaller

than 64MB lowmem, ignoring it.\n",

pages_to_mb(highmem_pages));

highmem_pages = 0;

}

max_low_pfn -= highmem_pages;

}

1.5. MEMORY DETECTION REVISITED 15

You can only use some amount of normal memory as high memory if you
have atleast 64mb of RAM after deducting memory for highmem. So, if
your system has 192mb of RAM, you can use upto 128mb as highmem. If
this condition is not satisfied, no highmem is created. If the request can be
satisfied, the highmem is deducted from max low pfn which gives the new
amount of normal memory present in the system.

#else

if (highmem_pages)

printk(KERN_ERR

"ignoring highmem size on non-highmem kernel!\n");

#endif

}

The normal memory can be used as highmem only if CONFIG HIGHMEM was
enabled.

#ifdef CONFIG_HIGHMEM

highstart_pfn = highend_pfn = max_pfn;

if (max_pfn > MAXMEM_PFN) {

highstart_pfn = MAXMEM_PFN;

printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",

pages_to_mb(highend_pfn - highstart_pfn));

}

#endif

The above code just prints the available (usable) memory above 896MB if
CONFIG HIGHMEM has been enabled.

/*

* Initialize the boot-time allocator (with low memory only):

*/

bootmap_size = init_bootmem(start_pfn, max_low_pfn);

This call initializes the bootmem allocator. Refer to section 1.7.2 for more
details. It also reserves all the pages.

/*

* Register fully available low RAM pages with the

* bootmem allocator.

*/

16 CHAPTER 1. INITIALIZATION

for (i = 0; i < e820.nr_map; i++) {

unsigned long curr_pfn, last_pfn, size;

/*

* Reserve usable low memory

*/

if (e820.map[i].type != E820_RAM)

continue;

/*

* We are rounding up the start address of usable memory:

*/

curr_pfn = PFN_UP(e820.map[i].addr);

if (curr_pfn >= max_low_pfn)

continue;

/*

* ... and at the end of the usable range downwards:

*/

last_pfn = PFN_DOWN(e820.map[i].addr +

e820.map[i].size);

if (last_pfn > max_low_pfn)

last_pfn = max_low_pfn;

/*

* .. finally, did all the rounding and playing

* around just make the area go away?

*/

if (last_pfn <= curr_pfn)

continue;

size = last_pfn - curr_pfn;

free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));

}

This loop goes through all usable RAM and marks it as available using the
free bootmem() routine. So after this, only memory of type 1 (usable RAM)
is marked as available. Refer to section 1.7.3 for more details.

/*

* Reserve the bootmem bitmap itself as well. We do this in two

* steps (first step was init_bootmem()) because this catches

* the (very unlikely) case of us accidentally initializing the

* bootmem allocator with an invalid RAM area.

*/

reserve_bootmem(HIGH_MEMORY, (PFN_PHYS(start_pfn) +

1.5. MEMORY DETECTION REVISITED 17

bootmap_size + PAGE_SIZE-1) - (HIGH_MEMORY));

This call marks the memory occupied by the kernel and the bootmem bitmap
as reserved. Here HIGH MEMORY is equal to 1MB, the start of the kernel.
Refer to section 1.7.4 for more details.

paging_init();

This call initializes the data structures necessary for paged memory manage-
ment. Refer to section 1.8.1 for more details.

1.5.2 Function setup memory region()

File: arch/i386/kernel/setup.c

This function is used to process and copy the memory map (section 1.1.1)
into the global variable e820. If it fails to do that, it creates a fake memory
map. It basically does this:

• Call sanitize e820 map() with the location of the e820 retrieved data
which does the actual processing of the raw data.

• Call copy e820 map() to do the actual copying.

• If unsuccessful, create a fake memory map, one 0–636k and the other
1mb to the maximum of either of what routines e801h or 88h returns.

• Print the final memory map.

1.5.3 Function sanitize e820 map()

File: arch/i386/kernel/setup.c

This function is used to remove any overlaps in the memory maps reported
by the BIOS. More detail later.

1.5.4 Function copy e820 map()

File: arch/i386/kernel/setup.c

This function copies the memory maps after doing some checks. It also does
some sanity checking.

if (nr_map < 2)

return -1;

arch/i386/kernel/setup.c
arch/i386/kernel/setup.c
arch/i386/kernel/setup.c

18 CHAPTER 1. INITIALIZATION

do {

unsigned long long start = biosmap->addr;

unsigned long long size = biosmap->size;

unsigned long long end = start + size;

unsigned long type = biosmap->type;

Read one entry.

/* Overflow in 64 bits? Ignore the memory map. */

if (start > end)

return -1;

/*

* Some BIOSes claim RAM in the 640k - 1M region.

* Not right. Fix it up.

*/

if (type == E820_RAM) {

if (start < 0x100000ULL && end > 0xA0000ULL) {

If start is below 1MB and end is greater than 640K:

if (start < 0xA0000ULL)

add_memory_region(start, 0xA0000ULL-start, type);

If start is less than 640K, add the memory region from start to 640k.

if (end <= 0x100000ULL)

continue;

start = 0x100000ULL;

size = end - start;

If end is greater than 1MB, then start from 1MB and add the memory region
avoiding the 640k to 1MB hole.

}

}

add_memory_region(start, size, type);

} while (biosmap++,--nr_map);

return 0;

1.5. MEMORY DETECTION REVISITED 19

1.5.5 Function add memory region()

File: arch/i386/kernel/setup.c

Adds the actual entry to e820.

int x = e820.nr_map;

Get the number of entries already added, used to add the new entry at the
end.

if (x == E820MAX) {

printk(KERN_ERR "Oops! Too many entries in

the memory map!\n");

return;

}

If the number of entries has already reached 32, display a warning and return.

e820.map[x].addr = start;

e820.map[x].size = size;

e820.map[x].type = type;

e820.nr_map++;

Add the entry and increment nr map.

1.5.6 Function print memory map()

File: arch/i386/kernel/setup.c

Prints the memory map to the console. eg:

BIOS-provided physical RAM map:

BIOS-e820: 0000000000000000 - 00000000000a0000 (usable)

BIOS-e820: 00000000000f0000 - 0000000000100000 (reserved)

BIOS-e820: 0000000000100000 - 000000000c000000 (usable)

BIOS-e820: 00000000ffff0000 - 0000000100000000 (reserved)

The above is the sanitised version of the data we got from the routine E820h.

arch/i386/kernel/setup.c
arch/i386/kernel/setup.c

20 CHAPTER 1. INITIALIZATION

1.6 NUMA

Before going any further, a brief overview of NUMA. From Documentation/

vm/numa (by Kanoj Sarcar):
It is an architecture where the memory access times for different regions

of memory from a given processor varies according to the “distance” of the
memory region from the processor. Each region of memory to which access
times are the same from any cpu, is called a node. On such architectures,
it is beneficial if the kernel tries to minimize inter node communications.
Schemes for this range from kernel text and read-only data replication across
nodes, and trying to house all the data structures that key components of the
kernel need on memory on that node.

Currently, all the numa support is to provide efficient handling of widely
discontiguous physical memory, so architectures which are not NUMA but
can have huge holes in the physical address space can use the same code. All
this code is bracketed by CONFIG DISCONTIGMEM.

The initial port includes NUMAizing the bootmem allocator code by en-
capsulating all the pieces of information into a bootmem data t structure.
Node specific calls have been added to the allocator. In theory, any platform
which uses the bootmem allocator should be able to to put the bootmem and
mem map data structures anywhere it deems best.

Each node’s page allocation data structures have also been encapsulated
into a pg data t. The bootmem data t is just one part of this. To make
the code look uniform between NUMA and regular UMA platforms, UMA
platforms have a statically allocated pg data t too (contig page data). For the
sake of uniformity, the variable “numnodes” is also defined for all platforms.
As we run benchmarks, we might decide to NUMAize more variables like
low on memory, nr free pages etc into the pg data t.

1.6.1 struct pglist data

File: include/linux/mmzone.h

Information of each node is stored in a structure of type pg data t. The
structure is as follows:

typedef struct pglist_data {

zone_t node_zones[MAX_NR_ZONES];

zonelist_t node_zonelists[GFP_ZONEMASK+1];

int nr_zones;

struct page *node_mem_map;

unsigned long *valid_addr_bitmap;

Documentation/vm/numa
Documentation/vm/numa
include/linux/mmzone.h

1.6. NUMA 21

struct bootmem_data *bdata;

unsigned long node_start_paddr;

unsigned long node_start_mapnr;

unsigned long node_size;

int node_id;

struct pglist_data *node_next;

} pg_data_t;

The description of the elements of the above structure follows:

node zones
Array of zones present in the node (MAX NR ZONES is 3). For more
information about a zone refer section 1.9 .

node zonelists
Its an array of zonelist t structures. A zonelist t is a structure contain-
ing a null terminated array of 3 zone pointers (total 4, 1 for NULL).
Total of GFP ZONEMASK+1 (16) zonelist t structures are created.
For each type of requirement, there is a mask specifying the order of
zones, in which they must be queried for allocation of memory (prior-
ity). Each of these structures represent one order (sequence of priority),
and are passed on to memory allocation routines.

nr zones
No. of zones present in this node.

node mem map
Array of structures representing the physical pages of the node.

valid addr bitmap
Contains a bitmap of usable and unusable pages.

bdata
The bootmem structure, contains information of the bootmem of the
node. More information in section 1.7.

node start paddr
The start of the physical address of the node.

node start mapnr
The page frame number of the first page of the node.

node size
The total number of pages present on this node.

22 CHAPTER 1. INITIALIZATION

node id
The index of the current node.

node next
A circular linked list of nodes is maintained. This points to the next
node (in i386, made to point to itself).

For i386, there is only one node which is represented by contig page data8 of
type pg data t. The bdata member of contig page data is initialized to zeroes
by assigning it to a statically allocated bootmem structure (variables declared
static are automatically initialized to 0, the variable contig bootmem data is
used only for this purpose).

1.7 Bootmem Allocator

The bootmem allocator is used only at boot, to reserve and allocate pages
for kernel use. It uses a bitmap to keep track of reserved and free pages.
This bitmap is created exactly after the end of the kernel (after end) and is
used to manage only low memory, ie. less than 896MB. This structure used
to store the bitmap is of type bootmem data.

1.7.1 struct bootmem data

File: include/linux/bootmem.h

typedef struct bootmem_data {

unsigned long node_boot_start;

unsigned long node_low_pfn;

void *node_bootmem_map;

unsigned long last_offset;

unsigned long last_pos;

} bootmem_data_t;

The Descriptions of the member elements:

node boot start
The start of the bootmem memory (the first page, normally 0).

8declared in mm/numa.c

include/linux/bootmem.h
mm/numa.c

1.7. BOOTMEM ALLOCATOR 23

node low pfn
Contains the end of low memory of the node.

node bootmem map
Start of the bootmem bitmap.

last offset
This is used to store the offset of the last byte allocated in the previous
allocation from last pos to avoid internal memory fragmentation (see
below).

last pos
This is used to store the page frame number of the last page of the pre-
vious allocation. It is used in the function alloc bootmem core() to
reduce internal fragmentation by merging contiguous memory requests.

1.7.2 Function init bootmem()

File: mm/bootmem.c

Prototypes:

unsigned long init_bootmem(unsigned long start,

unsigned long pages);

unsigned long init_bootmem_core (pg_data_t *pgdat,

unsigned long mapstart,

unsigned long start,

unsigned long end);

The function init bootmem() is used only at initialization to setup
the bootmem allocator. It is actually a wrapper over the function
init bootmem core() which is NUMA aware. The function init bootmem()

is passed the page frame number of the end of the kernel and max low pfn,
the page frame number of the end of low memory. It passes this information
along with the node contig page data to init bootmem core().

bootmem_data_t *bdata = pgdat->bdata;

Initialize bdata, this is done just for the convenience.

unsigned long mapsize = ((end - start)+7)/8;

The size of the bootmem bitmap is calculated and stored in mapsize. In
the above line, (end - start) gives the number of page frames present. We
are adding 7 to round it upwards before dividing to get the number of bytes
required (each byte maps 8 page frames).

mm/bootmem.c

24 CHAPTER 1. INITIALIZATION

pgdat->node_next = pgdat_list;

pgdat_list = pgdat;

The variable pgdat list is used to point to the head of the circular linked list
of nodes. Since we have only one node, make it point to itself.

mapsize = (mapsize + (sizeof(long) - 1UL)) &

~(sizeof(long) - 1UL);

The above line rounds mapsize upwards to the next multiple of 4 (the cpu
word size).

1. (mapsize + (sizeof(long) - 1UL) is used to round it upwards, here
(sizeof(long) - 1UL) = (4 - 1) = 3.

2. ∼ (sizeof(long) − 1UL) is used to mask the result and make it a
multiple of 4.

Eg. assume there are 40 pages of physical memory. So we get the mapsize
as 5 bytes. So the above operation becomes (5 + (4− 1))& ∼ (4− 1) which
becomes (8& ∼ 3) which is (00001000&11111100). The last two bits get
masked off, effectively making it a multiple of 4.

bdata->node_bootmem_map = phys_to_virt(mapstart

<< PAGE_SHIFT);

Point node bootmem map to mapstart which is the end of the kernel. The
macro phys to virt() returns the virtual address of the given physical address
(it just adds PAGE OFFSET to the given value).

bdata->node_boot_start = (start << PAGE_SHIFT);

Initialize node boot start with the starting physical address of the node (here
its 0x00000000).

bdata->node_low_pfn = end;

Initialize node low pfn with the page frame number of the last page of low
memory.

/*

* Initially all pages are reserved - setup_arch() has to

1.7. BOOTMEM ALLOCATOR 25

* register free RAM areas explicitly.

*/

memset(bdata->node_bootmem_map, 0xff, mapsize);

return mapsize;

Mark all page frames as reserved by setting all bits to 1 and return the
mapsize.

1.7.3 Function free bootmem()

File: mm/bootmem.c

Prototypes:

void free_bootmem (unsigned long addr,

unsigned long size);

void free_bootmem_core (bootmem_data_t *bdata,

unsigned long addr,

unsigned long size);

This function is used to mark the given range of pages as free (available) in
the bootmem bitmap. As above the real work is done by the NUMA aware
free bootmem core().

/*

* round down end of usable mem, partially free pages are

* considered reserved.

*/

unsigned long sidx;

unsigned long eidx = (addr + size -

bdata->node_boot_start)/PAGE_SIZE;

The variable eidx is initialized to the total no. of page frames.

unsigned long end = (addr + size)/PAGE_SIZE;

The variable end is initialized to the page frame no. of the last page.

if (!size) BUG();

if (end > bdata->node_low_pfn)

BUG();

The above two are assert statements checking impossible conditions.

mm/bootmem.c

26 CHAPTER 1. INITIALIZATION

/*

* Round up the beginning of the address.

*/

start = (addr + PAGE_SIZE-1) / PAGE_SIZE;

sidx = start - (bdata->node_boot_start/PAGE_SIZE);

start is initialized to the page frame no. of the first page (rounded upwards
) and sidx (start index) to the page frame no. relative to node boot start.

for (i = sidx; i < eidx; i++) {

if (!test_and_clear_bit(i, bdata->node_bootmem_map))

BUG();

}

Clear all the bits from sidx to eidx marking all the pages as available.

1.7.4 Function reserve bootmem()

File: mm/bootmem.c

Prototypes:

void reserve_bootmem (unsigned long addr, unsigned long size);

void reserve_bootmem_core(bootmem_data_t *bdata,

unsigned long addr,

unsigned long size);

This function is used for reserving pages. To reserve a page, it just sets the
appropriate bit to 1 in the bootmem bitmap.

unsigned long sidx = (addr - bdata->node_boot_start)

/ PAGE_SIZE;

The identifier sidx (start index) in initialized to the page frame no. relative
to node boot start.

unsigned long eidx = (addr + size - bdata->node_boot_start +

PAGE_SIZE-1)/PAGE_SIZE;

The variable eidx is initialized to the total no. of page frames (rounded
upwards).

unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;

The variable end is initialized to the page frame no. of the last page (rounded
upwards).

mm/bootmem.c

1.7. BOOTMEM ALLOCATOR 27

if (!size) BUG();

if (sidx < 0)

BUG();

if (eidx < 0)

BUG();

if (sidx >= eidx)

BUG();

if ((addr >> PAGE_SHIFT) >= bdata->node_low_pfn)

BUG();

if (end > bdata->node_low_pfn)

BUG();

Various assert conditions.

for (i = sidx; i < eidx; i++)

if (test_and_set_bit(i, bdata->node_bootmem_map))

printk("hm, page %08lx reserved twice.\n",

i*PAGE_SIZE);

Set the bits from sidx to eidx to 1.

1.7.5 Function alloc bootmem()

File: mm/bootmem.c

Prototypes:

void * __alloc_bootmem (unsigned long size,

unsigned long align,

unsigned long goal);

void * __alloc_bootmem_core (bootmem_data_t *bdata,

unsigned long size,

unsigned long align,

unsigned long goal);

The function alloc bootmem() tries to allocate pages from different nodes
in a round robin manner. Since in i386 there is only one node, it is the one
that is used every time. The description of alloc bootmem core() follows:

unsigned long i, start = 0;

void *ret;

unsigned long offset, remaining_size;

unsigned long areasize, preferred, incr;

unsigned long eidx = bdata->node_low_pfn -

(bdata->node_boot_start >> PAGE_SHIFT);

mm/bootmem.c

28 CHAPTER 1. INITIALIZATION

Initialize eidx with the total number of page frames present in the node.

if (!size) BUG();

if (align & (align-1))

BUG();

Assert conditions. We check to see if size is not zero and align is a power of
2.

/*

* We try to allocate bootmem pages above ’goal’

* first, then we try to allocate lower pages.

*/

if (goal && (goal >= bdata->node_boot_start) &&

((goal >> PAGE_SHIFT) < bdata->node_low_pfn)) {

preferred = goal - bdata->node_boot_start;

} else

preferred = 0;

preferred = ((preferred + align - 1) & ~(align - 1))

>> PAGE_SHIFT;

The preferred page frame for the begining of the allocation is calculated in
two steps:

1. If goal is non-zero and is valid, preferred is initialized with it (after
correcting it w.r.t node boot start) else it is zero.

2. The preferred physical address is aligned according to the parameter
align and the respective page frame number is derived.

areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;

Get the number of pages required (rounded upwards).

incr = align >> PAGE_SHIFT ? : 1;

The above line of code calculates the incr value (a.k.a. step). This value is
added to the preferred address in the loop below to find free memory of the
given alignment. The above line is using a gcc extension which evaluates to:

1.7. BOOTMEM ALLOCATOR 29

incr = (align >> PAGE_SHIFT) ? (align >> PAGE_SHIFT) : 1;

If the alignment required is greater than the size of a page, then incr is
align/4k pages else it is 1 page.

restart_scan:

for (i = preferred; i < eidx; i += incr) {

unsigned long j;

if (test_bit(i, bdata->node_bootmem_map))

continue;

This loop is used to find the first free page frame starting from the preferred
page frame number. The macro test bit() returns 1 if the given bit is set.

for (j = i + 1; j < i + areasize; ++j) {

if (j >= eidx)

goto fail_block;

if (test_bit (j, bdata->node_bootmem_map))

goto fail_block;

}

This loop is used to see if there are enough free page frames after the first to
satisfy the memory request. If any of the pages is not free, jump to fail block.

start = i;

goto found;

If it came till here, then enough free page frames have been found starting
from i. So jump over the fail block and continue.

fail_block:;

}

if (preferred) {

preferred = 0;

goto restart_scan;

If it came here, then successive page frames tp satisfy the request were not
found from the preferred page frame. So we ignore the preferred value (hint)
and start scanning from 0.

}

return NULL;

30 CHAPTER 1. INITIALIZATION

Enough memory was not found to satisfy the request. Exit returning NULL.

found:

Enough memory was found. Continue processing the request.

if (start >= eidx)

BUG();

Check for the impossible conditions (assert).

/*

* Is the next page of the previous allocation-end the start

* of this allocation’s buffer? If yes then we can ’merge’

* the previous partial page with this allocation.

*/

if (align <= PAGE_SIZE && bdata->last_offset

&& bdata->last_pos+1 == start) {

offset = (bdata->last_offset+align-1) & ~(align-1);

if (offset > PAGE_SIZE)

BUG();

remaining_size = PAGE_SIZE-offset;

The if statement checks for these conditions:

1. The alignment requested is less than page size (4k). This is done be-
cause if an alignment of size PAGE SIZE was requested, then there in no
chance of merging, as we need to start on a page boundary (completely
new page).

2. The variable last offset is non-zero. If it is zero, the previous allocation
completed on a perfect page frame boundary, so no internal fragmen-
tation.

3. Check whether the present memory request is adjacent to the previous
memory requet, if it is, then the two allocations can be merged.

If all conditions are satisfied, remaining size is initialized with the space
remaining in the last page of previous allocation.

if (size < remaining_size) {

areasize = 0;

// last_pos unchanged

bdata->last_offset = offset+size;

ret = phys_to_virt(bdata->last_pos*PAGE_SIZE

+ offset + bdata->node_boot_start);

1.7. BOOTMEM ALLOCATOR 31

If size of the memory request is smaller than the space available in the last
page of the previous allocation, then there is no need to reserve any new
pages. The variable last offset is incremented to new offset, last pos is un-
changed because it is still not full. The physical address of the start of
this new allocation is stored in the variable ret. The macro phys to virt()

returns the virtual address of given physical address.

} else {

remaining_size = size - remaining_size;

areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE;

ret = phys_to_virt(bdata->last_pos*PAGE_SIZE

+ offset + bdata->node_boot_start);

bdata->last_pos = start+areasize-1;

bdata->last_offset = remaining_size;

The requested size is greated than the remaining size. So now we need to find
the number of pages required after subtracting the space left in the last page
of the previous allocation and update the variables last pos and last offset.

Eg. in a previous allocation, if 9k was allocated, page pos will be 3 (as
three page frames are required), the internal fragmentation will be 12k - 9k
= 3k. So page offset would be 1k and remaining size being 3k. If the new
request is for 1k, then it would fit in the 3rd page frame itself, but if it was
10k, ((10 - 3) + PAGE SIZE-1)/PAGE SIZE would give the number of new
pages that need to be reserved. Which is 2 (for 7k), so page pos will now
become 3+2 = 5 and the new page offset is 3k.

}

bdata->last_offset &= ~PAGE_MASK;

} else {

bdata->last_pos = start + areasize - 1;

bdata->last_offset = size & ~PAGE_MASK;

ret = phys_to_virt(start * PAGE_SIZE +

bdata->node_boot_start);

}

This code is executed if we cannot merge as some condition has failed, we just
set the last pos and last offset to their new values directly without consider-
ing their old values. The value of last pos is incremented by the number of
page frames requested and the new page offset is calculated by masking out
all bits except those used to get the page offset. This operation is performed
by “size & ∼ PAGE MASK”. PAGE MASK is 0x00000FFF, the least signif-
icant 12 bits are used as page offset, so PAGE MASK is a value which can be

32 CHAPTER 1. INITIALIZATION

used to mask it. Using its inversion ∼ PAGE MASK, will just get page offset
which is equivalent to dividing the size by 4k and taking the remainder.

/*

* Reserve the area now:

*/

for (i = start; i < start+areasize; i++)

if (test_and_set_bit(i, bdata->node_bootmem_map))

BUG();

memset(ret, 0, size);

return ret;

Now that we have the memory, we need to reserve it. The macro
test and set bit() is used to test and set a bit to 1. It returns 0 if the
previous value of the bit was 0 and 1, if it was 1. We put an assert condi-
tion to check for the highly impossible condition for it returning 1 (maybe
bad RAM). We then initialize the memory to 0’s and return it to the calling
function.

1.7.6 Function free all bootmem()

File: mm/bootmem.c

Prototypes:

void free_all_bootmem (void);

void free_all_bootmem_core(pg_data_t *pgdat);

This function is used for freeing pages at boot and cleanup the bootmem
allocator.

struct page *page = pgdat->node_mem_map;

bootmem_data_t *bdata = pgdat->bdata;

unsigned long i, count, total = 0;

unsigned long idx;

if (!bdata->node_bootmem_map) BUG();

count = 0;

idx = bdata->node_low_pfn - (bdata->node_boot_start

>> PAGE_SHIFT);

Initialize idx to the number of low memory page frames in the node after the
end of the kernel.

mm/bootmem.c

1.7. BOOTMEM ALLOCATOR 33

for (i = 0; i < idx; i++, page++) {

if (!test_bit(i, bdata->node_bootmem_map)) {

count++;

ClearPageReserved(page);

set_page_count(page, 1);

__free_page(page);

}

}

Go through the bootmem bitmap, find free pages and mark the corresponding
entries in the mem map as free. The function set page count() sets the
count field of the page structure while free page() actually frees the page
and modifies the buddy bitmap.

total += count;

/*

* Now free the allocator bitmap itself, it’s not

* needed anymore:

*/

page = virt_to_page(bdata->node_bootmem_map);

count = 0;

for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start

>> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE;

i++,page++) {

count++;

ClearPageReserved(page);

set_page_count(page, 1);

__free_page(page);

}

Get the starting address of the bootmem, and free the pages containing it.

total += count;

bdata->node_bootmem_map = NULL;

return total;

Set the bootmem map member of the node to NULL and return the total
number of free pages.

34 CHAPTER 1. INITIALIZATION

1.8 Page Table Setup

1.8.1 Function paging init()

File: arch/i386/mm/init.c

This function is called only once by setup arch() to setup the page tables
of the kernel. The description follows:

pagetable_init();

The above routine actually builds the kernel page tables. For more informa-
tion refer section 1.8.2.

__asm__("movl %%ecx,%%cr3\n" ::"c"(__pa(swapper_pg_dir)));

Since the page tables are now ready, load the address of swapper pg dir (con-
tains the page directory of the kernel) into the CR3 register.

#if CONFIG_X86_PAE

/*

* We will bail out later - printk doesnt work right now so

* the user would just see a hanging kernel.

*/

if (cpu_has_pae)

set_in_cr4(X86_CR4_PAE);

#endif

__flush_tlb_all();

The above is a macro which invalidates the Translation Lookaside Buffers.
TLB maintain a few of the recent virtual to physical address translations.
Every time the page directory is changed, it needs to be flushed.

#ifdef CONFIG_HIGHMEM

kmap_init();

#endif

arch/i386/mm/init.c

1.8. PAGE TABLE SETUP 35

If CONFIG HIGHMEM has been enabled, then structures used by kmap
need to be initialized. Refer to section 1.8.4 for more information.

{

unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};

unsigned int max_dma, high, low;

max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS)

>> PAGE_SHIFT;

Only memory below 16MB can be used for ISA DMA (Direct Memory Access)
as the x86 ISA bus has only 24 address lines. In the above line, max dma is
used to store the page frame number of 16MB.

low = max_low_pfn;

high = highend_pfn;

if (low < max_dma)

zones_size[ZONE_DMA] = low;

else {

zones_size[ZONE_DMA] = max_dma;

zones_size[ZONE_NORMAL] = low - max_dma;

#ifdef CONFIG_HIGHMEM

zones_size[ZONE_HIGHMEM] = high - low;

#endif

}

The sizes for the three zones are calculated and stored in the array zones size.
The three zones are:

ZONE DMA
Memory from 0–16MB is allotted to this zone.

ZONE NORMAL
Memory above 16MB and less than 896MB is alloted to this zone.

ZONE HIGHMEM
Memory above 896MB is allotted to this zone.

More about zones in section 1.9 .

36 CHAPTER 1. INITIALIZATION

free_area_init(zones_size);

}

return;

The function free area init() is used to initialize the zone allocator. More
information in section 1.9.2.

1.8.2 Function pagetable init()

File: arch/i386/mm/init.c

This function actually builds the page tables in swapper pg dir, the kernel
page directory. Description:

unsigned long vaddr, end;

pgd_t *pgd, *pgd_base;

int i, j, k;

pmd_t *pmd;

pte_t *pte, *pte_base;

/*

* This can be zero as well - no problem, in that case we exit

* the loops anyway due to the PTRS_PER_* conditions.

*/

end = (unsigned long)__va(max_low_pfn*PAGE_SIZE);

Calculate the virtual address of max low pfn and store it in end.

pgd_base = swapper_pg_dir;

Point pgd base (page global directory base) to swapper pg dir.

#if CONFIG_X86_PAE

for (i = 0; i < PTRS_PER_PGD; i++)

set_pgd(pgd_base + i, __pgd(1 + __pa(empty_zero_page)));

#endif

If PAE has been enabled, PTRS PER PGD9 is 4.The variable swap-
per pg dir is used as a page-directory-pointer table and the empty zero page
is used for this. The macro set pgd() is defined in include/asm-i386/

pgtable-3level.h.

9File: include/asm-i386/pgtable-3level.h

arch/i386/mm/init.c
include/asm-i386/pgtable-3level.h
include/asm-i386/pgtable-3level.h
include/asm-i386/pgtable-3level.h

1.8. PAGE TABLE SETUP 37

i = __pgd_offset(PAGE_OFFSET);

pgd = pgd_base + i;

The macro pgd offset() retrieves the corresponding index in a page direc-
tory of the given address. So pgd offset(PAGE OFFSET) returns 0x300 (or
768 decimal), the index from where the kernel address space starts. Therefore
pgd now points to the 768th entry.

for (; i < PTRS_PER_PGD; pgd++, i++) {

vaddr = i*PGDIR_SIZE;

if (end && (vaddr >= end))

break;

PTRS PER PGD is 4 if CONFIG X86 PAE is enabled, otherwise it is 1024,
the number of entries in the table (page directory or page-directory-pointer
table). We find the virtual address and use it to find whether we have reached
the end. PGDIR SIZE gives us the amount of RAM that can be mapped by
a single page directory entry. It is 4MB or 1GB when CONFIG X86 PAE is
set.

#if CONFIG_X86_PAE

pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);

set_pgd(pgd, __pgd(__pa(pmd) + 0x1));

#else

pmd = (pmd_t *)pgd;

#endif

If CONFIG X86 PAE has been set, allocate a page (4k) of memory using
the bootmem allocator to hold the page middle directory and set its address
in the page global directory (AKA page-directory-pointer table), else there
is no page middle directory, it directly maps onto the page directory (it is
folded).

if (pmd != pmd_offset(pgd, 0))

BUG();

for (j = 0; j < PTRS_PER_PMD; pmd++, j++) {

vaddr = i*PGDIR_SIZE + j*PMD_SIZE;

if (end && (vaddr >= end))

break;

if (cpu_has_pse) {

unsigned long __pe;

set_in_cr4(X86_CR4_PSE);

38 CHAPTER 1. INITIALIZATION

boot_cpu_data.wp_works_ok = 1;

__pe = _KERNPG_TABLE + _PAGE_PSE + __pa(vaddr);

/* Make it "global" too if supported */

if (cpu_has_pge) {

set_in_cr4(X86_CR4_PGE);

__pe += _PAGE_GLOBAL;

}

set_pmd(pmd, __pmd(__pe));

continue;

}

Now starting to fill the page middle director (is page directory, without PAE).
The virtual address is calculated. PMD SIZE evaluates to 0 if PAE is not en-
abled. So vaddr = i * 4MB. Eg. The virtual address mapped by entry 0x300
is 0x300 * 4MB = 3GB. Next we check to see if PSE (Page Size Extension,
is available on Pentium and above) is available. If it is, then we avoid using
the page table and directly create 4MB pages. The macro cpu has pse10 is
used to find out if the processor has that feature and set in cr4() is used
to enable it.

Processors starting from Pentium Pro, can have an additional attribute,
the PGE (Page Global Enable). When a page is marked global and PGE is
set, the page table or page directory entry for that page is not invalidated
when a task switch occurs or when the cr3 is loaded. This will improve the
performance and it is also one of the reasons for giving the kernel, all the
address space above 3GB. After selecting all the attributes, the entry is set
in the page middle directory.

pte_base = pte = (pte_t *)

alloc_bootmem_low_pages(PAGE_SIZE);

This code is executed if PSE is not available. It allocates space for a page
table (4k).

for (k = 0; k < PTRS_PER_PTE; pte++, k++) {

vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;

if (end && (vaddr >= end))

break;

There are 1024 entries in a page table (= 512, if PAE), each entry maps 4k
(1 page).

10Defined in include/asm-i386/processor.h

include/asm-i386/processor.h

1.8. PAGE TABLE SETUP 39

*pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);

}

The macro mk pte phys() is used to create a page table entry from a physical
address. The attribute PAGE KERNEL is set to make it accessible in kernel
mode only.

set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base)));

if (pte_base != pte_offset(pmd, 0))

BUG();

}

}

The page table is added to the page middle directory with the call to
set pmd().This is continued in a loop till all the physical memory has been
mapped starting from PAGE OFFSET.

/*

* Fixed mappings, only the page table structure has to be

* created - mappings will be set by set_fixmap():

*/

vaddr = __fix_to_virt(__end_of_fixed_addresses - 1)

& PMD_MASK;

fixrange_init(vaddr, 0, pgd_base);

There are some virtual addresses, in the very top most region of memory
(4GB - 128MB), which are used directly in some parts of the kernel source.
These mappings are specified in the file include/asm/fixmap.h. The enum
end of fixed addresses is used as an index. The macro fix to virt()

returns a virtual address given the index (enum). More information in sec-
tion 1.8.3.1. The function fixrange init() creates the appropriate page
table entries for those virtual addresses. Note: Only entries in the page table
are created, no mappings are done. These addresses can later be mapped
using the function set fixmap().

#if CONFIG_HIGHMEM

/*

* Permanent kmaps:

*/

vaddr = PKMAP_BASE;

fixrange_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);

include/asm/fixmap.h

40 CHAPTER 1. INITIALIZATION

pgd = swapper_pg_dir + __pgd_offset(vaddr);

pmd = pmd_offset(pgd, vaddr);

pte = pte_offset(pmd, vaddr);

pkmap_page_table = pte;

#endif

If CONFIG HIGHMEM has been enabled, then we can access memory above
896MB by temporarily mapping it at the virtual addresses reserved for this
purpose. The value of PKMAP BASE is 0xFE000000 which is 4064MB (ie.
32MB below limit, 4GB) and that of LAST PKMAP is 1024 (is 512 if PAE).
So entries covering 4MB starting from 4064MB are created in the page table
by fixrange init(). Next, pkmap page table is assigned the page table entry
covering the 4mb memory.

#if CONFIG_X86_PAE

/*

* Add low memory identity-mappings - SMP needs it when

* starting up on an AP from real-mode. In the non-PAE

* case we already have these mappings through head.S.

* All user-space mappings are explicitly cleared after

* SMP startup.

*/

pgd_base[0] = pgd_base[USER_PTRS_PER_PGD];

#endif

1.8.3 Fixmaps

File: include/asm-i386/fixmap.h

Fixmaps are compile time fixed virtual addresses which are used for some spe-
cial purposes. These virtual addresses are mapped to physical pages at boot
time using the macro set fixmap(). These virtual addresses are allocated
from the very top of address space (0xFFFFE000, 4GB - 8k) downwards.
The fixed addresses can be calculated using the enum fixed addresses.

enum fixed_addresses {

#ifdef CONFIG_X86_LOCAL_APIC

/* local (CPU) APIC) -- required for SMP or not */

FIX_APIC_BASE,

#endif

#ifdef CONFIG_X86_IO_APIC

FIX_IO_APIC_BASE_0,

include/asm-i386/fixmap.h

1.8. PAGE TABLE SETUP 41

FIX_IO_APIC_BASE_END = FIX_IO_APIC_BASE_0 +

MAX_IO_APICS-1,

#endif

#ifdef CONFIG_X86_VISWS_APIC

FIX_CO_CPU, /* Cobalt timer */

FIX_CO_APIC, /* Cobalt APIC Redirection Table */

FIX_LI_PCIA, /* Lithium PCI Bridge A */

FIX_LI_PCIB, /* Lithium PCI Bridge B */

#endif

#ifdef CONFIG_HIGHMEM

/* reserved pte’s for temporary kernel mappings*/

FIX_KMAP_BEGIN,

FIX_KMAP_END = FIX_KMAP_BEGIN+(KM_TYPE_NR*NR_CPUS)-1,

#endif

__end_of_fixed_addresses

};

The above enums are used as an index to get the virtual address using the
macro fix to virt(). The other important defines are:

#define FIXADDR_TOP (0xffffe000UL)

#define FIXADDR_SIZE (__end_of_fixed_addresses << PAGE_SHIFT)

#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)

FIXADDR TOP
The top of the fixed address mappings. It starts just below the end of
memory (leaving 2 pages worth of address space) and grows down.

FIXADDR SIZE
It is used to calculate the number of pages required by fixmap. It de-
pends on the value of end of fixed addresses which again depends on
the various ifdef/endif combinations. Eg. if end of fixed addresses
evaluated to 4, then FIXADDR SIZE would return 4 * 4k = 16k.
PAGE SHIFT is 12, so left shifting is same as multiplying with 212.

FIXADDR START
It gives the starting address of the fixmapped addresses.

1.8.3.1 Macro fix to virt()

File: include/asm-i386/fixmap.h

It is defined as:

include/asm-i386/fixmap.h

42 CHAPTER 1. INITIALIZATION

#define __fix_to_virt(x) (FIXADDR_TOP - ((x) << PAGE_SHIFT))

It takes one of the enums in fixed addresses and calculates the correspond-
ing virtual address. Eg. if FIX KMAP BEGIN was 3, then the address is
calculated by multiplying it by 212 and subtracting it from FIXADDR TOP.

1.8.3.2 Function set fixmap()

File: include/asm-i386/fixmap.h

Prototype:

void __set_fixmap (enum fixed_addresses idx,

unsigned long phys,

pgprot_t flags);

This function is used to map physical addresses to the fixmapped virtual
addresses. Its parameters are:

idx
An index into the enum fixed addresses, used to calculate the virtual
address.

phys
The physical address which has to be mapped to the fixmapped virtual
address.

flags
The various protection flags of the pages (attributes).

unsigned long address = __fix_to_virt(idx);

Get the virtual address we are trying to map.

if (idx >= __end_of_fixed_addresses) {

printk("Invalid __set_fixmap\n");

return;

}

Check if an invalid index was passed.

set_pte_phys(address, phys, flags);

Do the actual mapping.

include/asm-i386/fixmap.h

1.8. PAGE TABLE SETUP 43

1.8.3.3 Function fixrange init()

File: arch/i386/mm/init.c

Prototype:

void fixrange_init (unsigned long start,

unsigned long end,

pgd_t *pgd_base);

This function is the one which actually creates the page table entries for the
fixmapped addresses. The code is as follows:

pgd_t *pgd;

pmd_t *pmd;

pte_t *pte;

int i, j;

unsigned long vaddr;

vaddr = start;

i = __pgd_offset(vaddr);

j = __pmd_offset(vaddr);

pgd = pgd_base + i;

Initialize pgd to point to the page directory entry which covers vaddr.

for (; (i < PTRS_PER_PGD) && (vaddr != end); pgd++, i++) {

#if CONFIG_X86_PAE

if (pgd_none(*pgd)) {

pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);

set_pgd(pgd, __pgd(__pa(pmd) + 0x1));

if (pmd != pmd_offset(pgd, 0))

printk("PAE BUG #02!\n");

}

pmd = pmd_offset(pgd, vaddr);

#else

pmd = (pmd_t *)pgd;

#endif

If PAE has been enabled, we need to create an additional page middle direc-
tory, otherwise we just fold it into page directory itself.

for (; (j < PTRS_PER_PMD) && (vaddr != end); pmd++, j++) {

if (pmd_none(*pmd)) {

arch/i386/mm/init.c

44 CHAPTER 1. INITIALIZATION

pte = (pte_t *)alloc_bootmem_low_pages(PAGE_SIZE);

set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte)));

if (pte != pte_offset(pmd, 0))

BUG();

}

vaddr += PMD_SIZE;

}

j = 0;

}

Next we create the page tables and create entries for them in the page middle
directory.

1.8.4 Function kmap init()

File: arch/i386/mm/init.c

This function is just used to store the page table entry and the protection
flags in kmap pte and kmap prot respectively (This is what the comment
means by “cache it”).

unsigned long kmap_vstart;

/* cache the first kmap pte */

kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN);

kmap_pte = kmap_get_fixmap_pte(kmap_vstart);

kmap_prot = PAGE_KERNEL;

The macro kmap get fixmap pte() is used to get the page table entry for
the given entry.

1.9 Memory Zones

Physical11 memory has been divided into different zones to differentiate be-
tween intended uses, and are generally used to model different characteristics
of the memory. Eg. on the x86, there is only 16MB of ISA DMA-able mem-
ory, so zone allocator will try to save DMA pages for processes specifically
requesting ZONE DMA. The available zones are:

ZONE DMA
ISA DMA capable memory.(<16MB, directly mapped by the kernel)

11This explanation is from the FAQ on #kernelnewbies, thanks to the contributor.

arch/i386/mm/init.c

1.9. MEMORY ZONES 45

ZONE NORMAL
Memory which is directy mapped by the kernel (> 16MB and <
896MB).

ZONE HIGHMEM
Memory which is not directly mapped by the kernel (> 896MB).

1.9.1 Structures

1.9.1.1 struct zone struct

File: include/linux/mmzone.h

Each zone is represented by a struct zone struct.

typedef struct zone_struct {

/*

* Commonly accessed fields:

*/

spinlock_t lock;

unsigned long free_pages;

unsigned long pages_min, pages_low, pages_high;

int need_balance;

/*

* free areas of different sizes

*/

free_area_t free_area[MAX_ORDER];

wait_queue_head_t * wait_table;

unsigned long wait_table_size;

unsigned long wait_table_shift;

/*

* Discontig memory support fields.

*/

struct pglist_data *zone_pgdat;

struct page *zone_mem_map;

unsigned long zone_start_paddr;

unsigned long zone_start_mapnr;

/*

include/linux/mmzone.h

46 CHAPTER 1. INITIALIZATION

* rarely used fields:

*/

char *name;

unsigned long size;

} zone_t;

The description of the members of struct zone struct:

lock
It is used for serialization of access to the other members of this struc-
ture.

free pages
The number of free pages present in the zone.

pages min
When the number of free pages in the zone reaches this number, only
the kernel can allocate more memory.

pages low
If the number of free pages gets below this point,the kernel starts swap-
ping aggressively.

pages high
The kernel tries to keep up to this amount of memory free; if memory
comes below this point, the kernel gently starts swapping in the hopes
that it never has to do real aggressive swapping.

need balance
A flag kswapd uses to determine if it needs to balance.

free area
Array of bitmaps and lists of pages used in buddy allocator.

wait table
The array holding the hash table. The purpose of this table is to keep
track of the processes waiting for a page to become available and make
them runnable again when possible.

wait table size
The size of the hash table array.

wait table shift
Used to hold the no. of left shifts (1 <<) to get the table size.

1.9. MEMORY ZONES 47

zone pgdat
The node in which the zone is.

zone mem map
The memory map of this zone.

zone start paddr
The starting physical address of the zone.

zone start mapnr
The index into mem map.

name
The name of the zone.

size
The total size of physical memory in the zone.

1.9.1.2 struct page

File: include/linux/mm.h

Also each physical page of memory (or page frame) has an associated struct
page which contains all the information needed to manage them.

typedef struct page {

struct list_head list;

struct address_space *mapping;

unsigned long index;

struct page *next_hash;

atomic_t count;

unsigned long flags;

struct list_head lru;

struct page **pprev_hash;

struct buffer_head * buffers;

void *virtual;

} mem_map_t;

list
This is used to point to the next page in any list.

mapping
Used to specify the inode we are mapping.

include/linux/mm.h

48 CHAPTER 1. INITIALIZATION

index
Our offset within mapping.

next hash
Points to the next page sharing the hash bucket in the pagecache hash
table.

count
Number of references to this page (usage count).

flags
Different attributes of the page.

lru
Used to point to the head of the lru list the page is in (active list,
inactive list).

pprev hash
Complement to next hash.

buffers
If this page is being used to hold buffers (buffered disk blocks), points
to the first buffer head.

virtual
When highmem memory is mapped into the kernel’s virtual address
space, this variable is used to store the virtual address of this page.

1.9.2 Function free area init()

File: mm/page_alloc.c

Prototypes:

void free_area_init(unsigned long *zones_size);

void free_area_init_core(int nid, pg_data_t *pgdat,

struct page **gmap,

unsigned long *zones_size,

unsigned long zone_start_paddr,

unsigned long *zholes_size,

struct page *lmem_map);

This function is used to initialize the memory zones and create the memory
map.

mm/page_alloc.c

1.9. MEMORY ZONES 49

struct page *p;

unsigned long i, j;

unsigned long map_size;

unsigned long totalpages, offset, realtotalpages;

const unsigned long zone_required_alignment = 1UL

<< (MAX_ORDER-1);

Alignment stuff, not yet clear to me though

if (zone_start_paddr & ~PAGE_MASK)

BUG();

Check if the zone is starting on a page boundary.

totalpages = 0;

for (i = 0; i < MAX_NR_ZONES; i++) {

unsigned long size = zones_size[i];

totalpages += size;

}

Calculate the total number of pages in the node.

realtotalpages = totalpages;

if (zholes_size)

for (i = 0; i < MAX_NR_ZONES; i++)

realtotalpages -= zholes_size[i];

printk("On node %d totalpages: %lu\n", nid, realtotalpages);

Print the number of pages found.

INIT_LIST_HEAD(&active_list);

INIT_LIST_HEAD(&inactive_list);

Initialize the LRU lists (circular linked lists).

/*

* Some architectures (with lots of mem and discontinous memory

* maps) have to search for a good mem_map area:

* For discontigmem, the conceptual mem map array starts from

50 CHAPTER 1. INITIALIZATION

* PAGE_OFFSET, we need to align the actual array onto a

* mem map boundary, so that MAP_NR works.

*/

map_size = (totalpages + 1)*sizeof(struct page);

if (lmem_map == (struct page *)0) {

lmem_map = (struct page *)

alloc_bootmem_node(pgdat, map_size);

lmem_map = (struct page *)(PAGE_OFFSET +

MAP_ALIGN((unsigned long)lmem_map

- PAGE_OFFSET));

}

Allocate space for the local memory map (array of struct page, each struct
represents one physical page, more below) and allign it.

*gmap = pgdat->node_mem_map = lmem_map;

pgdat->node_size = totalpages;

pgdat->node_start_paddr = zone_start_paddr;

pgdat->node_start_mapnr = (lmem_map - mem_map);

pgdat->nr_zones = 0;

Initialize the members of the node.

offset = lmem_map - mem_map;

The variable mem map is a global sparse array of struct pages, each structure
representing one physical page. The starting index of mem map depends on
the first zone of the first node, if it is zero, the index starts from zero else
the corresponding page frame number. Each zone has its own map stored in
zone mem map which is mapped into the containing node’s node mem map
which is in turn is part of the global mem map.

In the above line of code, offset represents the node’s memory map entry
point (index) into the global mem map. Here, it is zero as the page frame
number starts from zero on the i386.

for (j = 0; j < MAX_NR_ZONES; j++) {

This loop is used to initialize the members of the zones.

zone_t *zone = pgdat->node_zones + j;

unsigned long mask;

unsigned long size, realsize;

1.9. MEMORY ZONES 51

zone_table[nid * MAX_NR_ZONES + j] = zone;

realsize = size = zones_size[j];

The actual zone data is stored in the node, so take a pointer to the correct
zone and get its size. Also initialize the zone table entries at the same time.

if (zholes_size)

realsize -= zholes_size[j];

printk("zone(%lu): %lu pages.\n", j, size);

Correct for any holes and print out the zone sizes. Sample output:

zone(0): 4096 pages.

zone(1): 45056 pages.

zone(2): 0 pages.

Here zone 2 is 0 as I have only 192mb of RAM in my system.

zone->size = size;

zone->name = zone_names[j];

zone->lock = SPIN_LOCK_UNLOCKED;

zone->zone_pgdat = pgdat;

zone->free_pages = 0;

zone->need_balance = 0;

Initialize the member elements.

if (!size)

continue;

If the size of a zone is zero like my zone 2 (HIGH MEM), no need for further
initializations.

zone->wait_table_size = wait_table_size(size);

zone->wait_table_shift =

BITS_PER_LONG - wait_table_bits(zone->wait_table_size);

zone->wait_table =

(wait_queue_head_t *) alloc_bootmem_node

(pgdat, zone->wait_table_size * sizeof(wait_queue_head_t));

for(i = 0; i < zone->wait_table_size; ++i)

init_waitqueue_head(zone->wait_table + i);

52 CHAPTER 1. INITIALIZATION

Initialize the wait queues.

pgdat->nr_zones = j+1;

mask = (realsize / zone_balance_ratio[j]);

if (mask < zone_balance_min[j])

mask = zone_balance_min[j];

else if (mask > zone_balance_max[j])

mask = zone_balance_max[j];

Calculate the appropriate balance ratio.

zone->pages_min = mask;

zone->pages_low = mask*2;

zone->pages_high = mask*3;

zone->zone_mem_map = mem_map + offset;

zone->zone_start_mapnr = offset;

zone->zone_start_paddr = zone_start_paddr;

Set the watermarks and initialize zone mem map with the correct pointer
into the global mem map. The variable zone start mapnr is initialized with
the index into the global mem map.

if ((zone_start_paddr >> PAGE_SHIFT) &

(zone_required_alignment-1))

printk("BUG: wrong zone alignment, it will crash\n");

/*

* Initially all pages are reserved - free ones are freed

* up by free_all_bootmem() once the early boot process is

* done. Non-atomic initialization, single-pass.

*/

for (i = 0; i < size; i++) {

struct page *page = mem_map + offset + i;

set_page_zone(page, nid * MAX_NR_ZONES + j);

set_page_count(page, 0);

SetPageReserved(page);

memlist_init(&page->list);

if (j != ZONE_HIGHMEM)

set_page_address(page, __va(zone_start_paddr));

zone_start_paddr += PAGE_SIZE;

}

1.9. MEMORY ZONES 53

Set the zone in which the page lies as one of the page’s attributes in the
flag. Also make the count of the page as zero and mark it as reserved (it will
be un-reserved again in mem init()). Initialize the list member of the page
and also set the virtual address of the page in the virtual member of struct
page.

offset += size;

Increment the offset by size to point to the starting index of the next zone
in mem map.

for (i = 0; ; i++) {

unsigned long bitmap_size;

memlist_init(&zone->free_area[i].free_list);

if (i == MAX_ORDER-1) {

zone->free_area[i].map = NULL;

break;

}

Initialize the linked list free area[].free list (more information in section 2.2)
and the bitmap of the last order to NULL.

/*

* Page buddy system uses "index >> (i+1)",

* where "index" is at most "size-1".

*

* The extra "+3" is to round down to byte

* size (8 bits per byte assumption). Thus

* we get "(size-1) >> (i+4)" as the last byte

* we can access.

*

* The "+1" is because we want to round the

* byte allocation up rather than down. So

* we should have had a "+7" before we shifted

* down by three. Also, we have to add one as

* we actually _use_ the last bit (it’s [0,n]

* inclusive, not [0,n[).

*

* So we actually had +7+1 before we shift

* down by 3. But (n+8) >> 3 == (n >> 3) + 1

* (modulo overflows, which we do not have).

54 CHAPTER 1. INITIALIZATION

*

* Finally, we LONG_ALIGN because all bitmap

* operations are on longs.

*/

bitmap_size = (size-1) >> (i+4);

bitmap_size = LONG_ALIGN(bitmap_size+1);

zone->free_area[i].map = (unsigned long *)

alloc_bootmem_node(pgdat, bitmap_size);

}

The size of the bitmap is calculated. It is then allocated using the bootmem
allocator.

}

build_zonelists(pgdat);

Create the different zonelists in the node. These zonelists are used in alloca-
tion purposes to specify the order (priority, preference) of the zones in which
to query for a free page.

1.9.3 Function build zonelists()

File: mm/page_alloc.c

int i, j, k;

for (i = 0; i <= GFP_ZONEMASK; i++) {

zonelist_t *zonelist;

zone_t *zone;

zonelist = pgdat->node_zonelists + i;

memset(zonelist, 0, sizeof(*zonelist));

Get the pointer to the zonelist member of the node and initialize it with null
pointers.

j = 0;

k = ZONE_NORMAL;

if (i & __GFP_HIGHMEM)

k = ZONE_HIGHMEM;

if (i & __GFP_DMA)

k = ZONE_DMA;

mm/page_alloc.c

1.9. MEMORY ZONES 55

Compare the current mask with the three available and use it for the switch
statement below.

switch (k) {

default:

BUG();

/*

* fallthrough:

*/

case ZONE_HIGHMEM:

zone = pgdat->node_zones + ZONE_HIGHMEM;

if (zone->size) {

#ifndef CONFIG_HIGHMEM

BUG();

#endif

zonelist->zones[j++] = zone;

}

case ZONE_NORMAL:

zone = pgdat->node_zones + ZONE_NORMAL;

if (zone->size)

zonelist->zones[j++] = zone;

case ZONE_DMA:

zone = pgdat->node_zones + ZONE_DMA;

if (zone->size)

zonelist->zones[j++] = zone;

}

The given mask specifies the order of preferrence,so we use it to find the
entry point into the switch statement and just fall through it. So, if the
mask was GFP DMA, the zonelist will contain only the DMA zone, if it
was GFP HIGHMEM, it would have ZONE HIGHMEM, ZONE NORMAL
and ZONE DMA in that order.

zonelist->zones[j++] = NULL;

}

Null terminate the list.

1.9.4 Function mem init()

File: arch/i386/mm/init.c

This function is called by start kernel to further initialize the zone allocator.

arch/i386/mm/init.c

56 CHAPTER 1. INITIALIZATION

int codesize, reservedpages, datasize, initsize;

int tmp;

int bad_ppro;

if (!mem_map)

BUG();

#ifdef CONFIG_HIGHMEM

highmem_start_page = mem_map + highstart_pfn;

max_mapnr = num_physpages = highend_pfn;

num_mappedpages = max_low_pfn;

If CONFIG HIGHMEM is set then get the starting address of HIGHMEM
and the total number of pages.

#else

max_mapnr = num_mappedpages = num_physpages = max_low_pfn;

#endif

Else the number of pages is just the number of normal memory pages.

high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);

Get the virtual address of the the last page of low memory.

/* clear the zero-page */

memset(empty_zero_page, 0, PAGE_SIZE);

/* this will put all low memory onto the freelists */

totalram_pages += free_all_bootmem();

reservedpages = 0;

The function free all bootmem() essentially frees all low memory and after
this point bootmem allocator is no longer usable. Refer to section 1.7.6 for
more information on this function.

/*

* Only count reserved RAM pages

*/

for (tmp = 0; tmp < max_low_pfn; tmp++)

if (page_is_ram(tmp) && PageReserved(mem_map+tmp))

reservedpages++;

1.9. MEMORY ZONES 57

Go through the mem map and count reserved pages.

#ifdef CONFIG_HIGHMEM

for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) {

struct page *page = mem_map + tmp;

if (!page_is_ram(tmp)) {

SetPageReserved(page);

continue;

}

if (bad_ppro && page_kills_ppro(tmp)) {

SetPageReserved(page);

continue;

}

ClearPageReserved(page);

set_bit(PG_highmem, &page->flags);

atomic_set(&page->count, 1);

__free_page(page);

totalhigh_pages++;

}

totalram_pages += totalhigh_pages;

#endif

Go through high memory and reserve pages which are not usable else mark
the as PG highmem and call free page() which frees it and modifies the
buddy bitmap (refer section 2.2.2).

codesize = (unsigned long) &_etext - (unsigned long) &_text;

datasize = (unsigned long) &_edata - (unsigned long) &_etext;

initsize = (unsigned long) &__init_end -

(unsigned long) &__init_begin;

printk("Memory: %luk/%luk available

(%dk kernel code,

%dk reserved,

%dk data, %dk init, %ldk highmem)\n",

(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),

max_mapnr << (PAGE_SHIFT-10),

codesize >> 10,

reservedpages << (PAGE_SHIFT-10),

datasize >> 10,

initsize >> 10,

58 CHAPTER 1. INITIALIZATION

(unsigned long)(totalhigh_pages << (PAGE_SHIFT-10)));

Calculate the sizes of various sections of the kernel and print out the statistics.

1.10 Initialization of Slab Allocator

1.10.1 Function kmem cache init()

File: mm/slab.c

This function is used to initialize the slab allocator.

size_t left_over;

init_MUTEX(&cache_chain_sem);

INIT_LIST_HEAD(&cache_chain);

Initialize the semaphore serializing access to the cache chain and also initialize
the cache chain (circular linked list) itself.

kmem_cache_estimate(0, cache_cache.objsize, 0,

&left_over, &cache_cache.num);

The above function initializes the cache cache. It calculates the number of
objects that can be held on a single slab and the space that will be left
(wasted, used for coloring). The variable cache cache is used to cache other
cache entries.

if (!cache_cache.num)

BUG();

cache_cache.colour = left_over/cache_cache.colour_off;

The members of the above structure type will be covered in more detail in a
later chapter but the brief explanation for colour is that it is used to store the
coloring range. The var cache cache.colour off has been statically initialised
to 32 bytes, the size of the cache line of L1 cache available on i386. So the
above statement basically calculates the colour range available for this cache.
Eg. if only 20 bytes were left, then only 0–19 can be used for colouring. The
concept of colouring will be explained along with the slab allocator.

cache_cache.colour_next = 0;

Set the colour of the cache. Since this is the first cache, it has been set to 0.

mm/slab.c

1.10. INITIALIZATION OF SLAB ALLOCATOR 59

1.10.2 Function kmem cache sizes init()

File: mm/slab.c

This function is also called from start kernel() to setup the general caches.
Caches of sizes 32 bytes to 128k are created of both DMA and non-DMA
memory.

cache_sizes_t *sizes = cache_sizes;

char name[20];

The variable cache sizes is a statically allocated structure containing all the
sizes filled in and the pointers to the actual caches initialized to NULL which
are initialized by this function.

/*

* Fragmentation resistance on low memory - only use bigger

* page orders on machines with more than 32MB of memory.

*/

if (num_physpages > (32 << 20) >> PAGE_SHIFT)

slab_break_gfp_order = BREAK_GFP_ORDER_HI;

If more than 32mb is available, then higher order pages (22) can be used for
the slabs else it is only 21. This variable is used in kmem cache create().

do {

/* For performance, all the general caches are L1 aligned.

* This should be particularly beneficial on SMP boxes, as it

* eliminates "false sharing".

* Note for systems short on memory removing the alignment will

* allow tighter packing of the smaller caches. */

sprintf(name,"size-%Zd",sizes->cs_size);

if (!(sizes->cs_cachep = kmem_cache_create(name,

sizes->cs_size,0,

SLAB_HWCACHE_ALIGN,

NULL, NULL))) {

BUG();

}

Create the cache with hardware alignment and 0 offset. The name member
is used to display information in slabinfo (cat /proc/slabinfo).

mm/slab.c

60 CHAPTER 1. INITIALIZATION

/* Inc off-slab bufctl limit until the ceiling is hit. */

if (!(OFF_SLAB(sizes->cs_cachep))) {

offslab_limit = sizes->cs_size-sizeof(slab_t);

offslab_limit /= 2;

}

Try to make it an off-slab, more details later when i get it in my head (:-).

sprintf(name, "size-%Zd(DMA)",sizes->cs_size);

sizes->cs_dmacachep = kmem_cache_create(name,

sizes->cs_size, 0,

SLAB_CACHE_DMA|

SLAB_HWCACHE_ALIGN,

NULL, NULL);

if (!sizes->cs_dmacachep)

BUG();

sizes++;

Create the DMA cache with hardware alignment and 0 offset. Then incre-
ment the size for the next round.

} while (sizes->cs_size);

Chapter 2

Physical Memory Allocation

2.1 Zone Allocator

As previously mentioned, memory has been divided into different zones.
From these zones, memory is allocated and de-allocated by the zone allo-
cator using the buddy system algorithm.

2.2 Buddy System

The buddy system is a conceptually simple memory allocation algorithm.
Its main use is to reduce external fragmentation as much as possible and at
the same time allow fast allocation and de-allocation of pages. To reduce
external fragmentation, free contiguous memory pages are grouped into lists
of different sizes (or orders). This allows all 2 page sized blocks to be on
one list, 4 page blocks on another and so on. If a requirement comes for
4 contiguous pages, the request can be quickly satisfied by checking to see
if there are any free 4 page blocks. If available, it is used to satisfy the
request else the next order (size) is tried. So if an 8 page block is available,
it is split into 2 4-page blocks and one is returned to the requester while the
other is added to the 4 block list. This avoids splitting large contiguous free
page blocks when a request can be satisfied by a smaller block thus reducing
external fragmentation. Also the physical address of the first page frame
needs to be a multiple of the block size, ie a block of size 2n has to be aligned
with 4k * 2n.

Conversely, when a page block of a certain order is being freed, attempt
is made to merge it with its adjacent block (buddy) of the same order if it is
already free, to get a free block of an higher order. This is done recursively
until a bigger merge is not possible. This free block is then added to the

61

62 CHAPTER 2. PHYSICAL MEMORY ALLOCATION

appropriate high order free list. This is also known as Coalescence.

2.2.0.1 struct free area struct

File: include/linux/mmzone.h

Linux uses lists of 1,2,4,8,16,32,64,128,256 and 512 page blocks. To manage
these lists and implement the buddy system it uses the structure free area struct

(a.k.a free area t).

typedef struct free_area_struct {

struct list_head free_list;

unsigned long *map;

} free_area_t;

The fields of the above structure are used as follows:

free list
Its a doubly linked list of free page blocks of a certain size. It points to
the first and last page blocks, while the list member of struct page

is used to link up the pages in between.

map
Also known as the buddy bitmap, it is contains information about the
availability of a buddy. Its size is calculated using the formula:

((number of pages) - 1 >> (order + 4)) + 1 bytes

Each bit represents two adjacent blocks of the same size. Its value is 0
if both the blocks are either partially or fully used (busy) or completely
free. It is 1 if exactly one of the blocks is completely free and the other
is (partially or fully) used.

Each zone has an array of these structure, one for each size.

2.2.1 Example

Let us assume that we have a system with only 16 pages of RAM as shown
in figure 2.1. Since there are only 16 pages of RAM, we will only have buddy
bitmaps for four orders. They will be as follows:

include/linux/mmzone.h

2.2. BUDDY SYSTEM 63

Figure 2.1: Example

pages: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

order(0): 0 0 1 0 0 1 0 0

order(1): 0 0 1 0

order(2): 0 1

order(3): 0

In order(0), the first bit represents the first 2 pages, second bit the other 2
and so on. The 3rd bit is 1 as page 4 is busy while page 5 is free. Also, in
order(1), bit 3 is 1 because one buddy is completely free (pages 8 and 9)
and the other buddy (pages 10 and 11) is not, so there is a possibility of a
merge.

2.2.1.1 Allocation

Following are the steps performed, if we want a free page block of order(1).

1. Initially the free lists will be:

order(0): 5, 10

order(1): 8 [8,9]

order(2): 12 [12,13,14,15]

order(3):

2. Since the order(1) list contains one free page block, it is returned to
the user and removed from the list.

3. If we need another order(1) block, we again scan the free lists starting
from the order(1) free list.

64 CHAPTER 2. PHYSICAL MEMORY ALLOCATION

4. Since there in no free block available, we go to the next higher order,
order(2).

5. Here there is one free page block, starting from page 12. This block
is now made into two smaller order(1) blocks, [12,13] and [14,15]. The
block starting [14,15] is added to the order(1) free list and the first
block [12,13] is returned to the user.

6. Finally the free lists will be:

order(0): 5, 10

order(1): 14 [14,15]

order(2):

order(3):

2.2.1.2 De-Allocation

Taking the same example, following are the steps performed, if we are freeing
page 11 (order 0).

1. Find the bit representing page 11 in the buddy bitmap of order(0) using
the formula:

index = page_idx >> (order + 1)

= 11 >> (0 + 1)

= 5

2. Then we check the value of that bit. If it is 1, there is a free buddy
adjacent to us. Bit 5 is 1, as its buddy page 10 is free.

3. So we now reset the bit to 0, as both the buddies are now completely
free.

4. We remove page 10 from the free list of order(0).

5. We start all over again, with 2 free pages (10 and 11, order(1)).

6. The start of this new free page block is 10, so find its index in the
buddy bitmap of order(1). Using the above formula, we get it as bit 2
(3rd bit).

2.2. BUDDY SYSTEM 65

7. Bit 2 (in order(1) bitmap) is again 1 as the buddy of the page block
being freed consisting of pages 8 and 9 is free.

8. Reset bit 2 and remove page block of size 2 starting with page 8 from
the free list of order(1).

9. We go up another order. We now have 4 contiguous free pages starting
from page 8. We find its bit index in the order(2) buddy bitmap. It is
bit 1 whose value is 1, signifying another merge.

10. Page block starting from page 12 of size 4 is removed from the free list
of order(2) and merged with our page block. So now we have 8 free
contiguous page starting from page 8.

11. We go another order up, to order(3). Its bit index is 0, whose value
is also 0. Which means that the other buddy is not completely free.
Since no merge is possible, we just set the bit as 1 and add the free
page blocks to order(3)’s free list.

12. So finally we have 8 contiguous free blocks and the buddy bitmap looks
like this:

pages: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

order(0): 0 0 1 0 0 0 0 0

order(1): 0 0 0 0

order(2): 0 0

order(3): 1

2.2.2 Function free pages ok()

File: mm/page_alloc.c

Prototype:

void __free_pages_ok (struct page *page,

unsigned int order);

This is the function which is used to free the pages when they are no longer
required. Pages can be freed in blocks of specific orders (20,. . . ,29) only when
they are block aligned, ie. if you are trying to free a 16 page block, it needs
to be on a 16 page boundary.

mm/page_alloc.c

66 CHAPTER 2. PHYSICAL MEMORY ALLOCATION

unsigned long index, page_idx, mask, flags;

free_area_t *area;

struct page *base;

zone_t *zone;

if (PageLRU(page))

lru_cache_del(page);

Check to see if the page to be freed is in any of the lru lists, if it is, remove
it from there.

if (page->buffers)

BUG();

if (page->mapping)

BUG();

if (!VALID_PAGE(page))

BUG();

if (PageSwapCache(page))

BUG();

if (PageLocked(page))

BUG();

if (PageLRU(page))

BUG();

if (PageActive(page))

BUG();

The above assert conditions check for the following:

1. The page is not being used for storing any buffers.

2. Its not part of any fs mapping.

3. The page is valid.

4. The page is not in the swap cache.

5. The page has not been locked by any process.

6. The page is not on the LRU list (dead code, as already been done
above).

2.2. BUDDY SYSTEM 67

7. The page is not on the active list.

page->flags &= ~((1<<PG_referenced) | (1<<PG_dirty));

Reset the referenced and dirty bits to 0.

if (current->flags & PF_FREE_PAGES)

goto local_freelist;

When a process frees up the pages it needs, instead of freeing them back
proper, it frees after setting the (task struct) flag to PF FREE PAGES, so that
the pages are added to the process’s local freelist. The above code checks for
this condition and makes a jump to the correct code.

back_local_freelist:

zone = page_zone(page);

Get the zone the page is in.

mask = (~0UL) << order;

Create a mask for the order of pages being freed.

base = zone->zone_mem_map;

base is the first page in the current zone.

page_idx = page - base;

The index of the first page frame (if more than one page is being freed) inside
the zone mem map.

if (page_idx & ~mask)

BUG();

68 CHAPTER 2. PHYSICAL MEMORY ALLOCATION

If the page is not aligned to the order size, it’s a bug.

index = page_idx >> (1 + order);

index is the bit position of the page being freed in the buddy bitmap.

area = zone->free_area + order;

The free area t struct of the correct order is stored in area. This structure
contains the free list of pages of the given order and also a corresponding
buddy bitmap.

spin_lock_irqsave(&zone->lock, flags);

zone->free_pages -= mask;

Lock the zone and increment the no. of free pages (-mask == no. of pages
being freed).

while (mask + (1 << (MAX_ORDER-1))) {

The value of MAX ORDER is 10, where as the value of mask varies from:

mask (decimal)

order(0): 11111111111111111111111111111111

order(9): 11111111111111111111111000000000

(1 << (MAX_ORDER-1)) = 00000000000000000000001000000000

When mask reaches its upper limit, the sum becomes 0 thus quitting the
while loop.

struct page *buddy1, *buddy2;

if (area >= zone->free_area + MAX_ORDER)

BUG();

if (!__test_and_change_bit(index, area->map))

/*

* the buddy page is still allocated.

*/

break;

2.2. BUDDY SYSTEM 69

If the buddy of the page block being freed is already free (ie. a merge can
be made), the corresponding bit in the free area bitmap is 1, else if it is
busy (not free), it is 0. So the above code checks if the bit is 0 or 1 and then
toggles it. If it was 0, meaning the buddy is not free, test and change bit

returns 0 after setting it to 1. Since we are using ! here, it evaluates to 1 and
the code breaks the while loop and we cannot merger any further. We set it
to 1 so that the next time we are here (adjacent block being freed), we can
merge both of the blocks.

/*

* Move the buddy up one level.

*/

buddy1 = base + (page_idx ^ -mask);

This statement is used to get an handle (pointer) to the structure (struct
page) representing the first page of buddy of the block of pages being freed.
Now, the block of pages being freed can be either in front of its buddy or
follow its buddy. In other words, to get the pointer to the buddy, we may
have to add the number of pages or subtract them. Lets take an example,
if we are freeing page 5 (order 0), then its buddy is page 4 and vice versa.
Thats why we use the exclusive OR operator here. Here, -mask is equivalent
to the number of pages being freed.

To see how this works, we will take the same example mentioned above.
we are freeing page 4, so the equation will look like:

buddy1 = 0 + (4 ^ 1);

4 ^ 1 == 00000100 ^ 00000001 = 00000101 = 5

Similarly if we were freeing page 5:

buddy1 = 0 + (5 ^ 1);

5 ^ 1 == 00000101 ^ 00000001 = 00000100 = 4

buddy2 = base + page_idx;

This is pretty straight forward. Get the pointer to the structure of the first
page of the block being freed.

70 CHAPTER 2. PHYSICAL MEMORY ALLOCATION

if (BAD_RANGE(zone,buddy1))

BUG();

if (BAD_RANGE(zone,buddy2))

BUG();

memlist_del(&buddy1->list);

Since buddy1 can be merged with buddy2, remove buddy1 from the free list
its currently in. It can then be paired with the block being freed and added
to the free list of an higher order.

mask <<= 1;

area++;

index >>= 1;

page_idx &= mask;

}

Update mask so that we can try to merge blocks of higher order. The oper-
ation “mask <<= 1” increases the order and with that the number of pages
it is trying to merge (remember -mask == no. of pages it is trying to free).
Also make area point to the free area t structure of the next order. Divide
index by 2 to get the new bit position of the buddy blocks in the higher order
bitmap. Also modify page idx to make sure it points to the first buddy.

memlist_add_head(&(base + page_idx)->list, &area->free_list);

spin_unlock_irqrestore(&zone->lock, flags);

return;

We cannot merge anymore buddies so we just add it to the free list of the
current order.

local_freelist:

if (current->nr_local_pages)

goto back_local_freelist;

If the process has already freed pages for itself, don’t give it more.

2.2. BUDDY SYSTEM 71

if (in_interrupt())

goto back_local_freelist;

An interrupt doesn’t have a current process to store pages on.

list_add(&page->list, ¤t->local_pages);

page->index = order;

current->nr_local_pages++;

Add the page onto the local list, update the page information and return.

2.2.3 Function alloc pages()

File: mm/page_alloc.c

Prototype:

struct page * __alloc_pages(unsigned int gfp_mask,

unsigned int order,

zonelist_t *zonelist)

This function is used to allocate free pages and is the heart of the zoned
buddy allocator.

unsigned long min;

zone_t **zone, * classzone;

struct page * page;

int freed;

zone = zonelist->zones;

classzone = *zone;

The zonelist is an array of zones which is used to specify the preferred order
for getting memory. The first zone is the most preferred zone, so save a
reference to it in classzone.

min = 1UL << order;

Get the number of pages being requested.

mm/page_alloc.c

72 CHAPTER 2. PHYSICAL MEMORY ALLOCATION

for (;;) {

zone_t *z = *(zone++);

Loop through each zone to find free pages.

if (!z)

break;

min += z->pages_low;

If we come to the end of the zonelist, break. Each zone needs to have atleast
pages low number of pages free at any time. So to satisfy our request, it
needs pages low number of pages + the number of pages being requested.

if (z->free_pages > min) {

page = rmqueue(z, order);

if (page)

return page;

}

}

If the number of free pages in the zone is more than our requirement, the func-
tion rmqueue() is used to allocate the pages and return. Refer section 2.2.4
for more details on rmqueue().

classzone->need_balance = 1;

mb();

if (waitqueue_active(&kswapd_wait))

wake_up_interruptible(&kswapd_wait);

The pages low marker has been reached, so mark the zone as needing bal-
ancing and wake up kswapd which will start freeing pages in this zone.

zone = zonelist->zones;

min = 1UL << order;

for (;;) {

2.2. BUDDY SYSTEM 73

unsigned long local_min;

zone_t *z = *(zone++);

if (!z)

break;

local_min = z->pages_min;

Start moving through the zones again. This time we ignore the pages low

water-mark hoping that kswapd will do its job. We still have to consider the
second low water-mark, ie. pages min. If we go below it, then we need to
start recovering the pages ourself (instead of kswapd).

if (!(gfp_mask & __GFP_WAIT))

local_min >>= 2;

min += local_min;

If the process cannot wait, we get ourself into a more tight position by de-
creasing the second water-mark (= dividing by 4). We then add the number
of pages required to it.

if (z->free_pages > min) {

page = rmqueue(z, order);

if (page)

return page;

}

}

If the required pages are available, we allocate them.

/* here we’re in the low on memory slow path */

rebalance:

if (current->flags & (PF_MEMALLOC | PF_MEMDIE)) {

PF MEMALLOC is set if the calling process wants to be treated as a memory
allocator, kswapd for example. This process is high priority and should be
served if at all possible. PF MEMDIE is set by the OOM killer. The calling
process is going to die no matter what but needs a bit of memory to die
cleanly, hence give what it needs because we’ll get it back soon.

74 CHAPTER 2. PHYSICAL MEMORY ALLOCATION

zone = zonelist->zones;

for (;;) {

zone_t *z = *(zone++);

if (!z)

break;

page = rmqueue(z, order);

if (page)

return page;

}

return NULL;

}

Here we don’t check any water-marks or limits, we just try to give the memory
if its possible.

/* Atomic allocations - we can’t balance anything */

if (!(gfp_mask & __GFP_WAIT))

return NULL;

page = balance_classzone(classzone, gfp_mask, order, &freed);

We don’t have any pages, so if the process cannot wait, just return NULL.
If it can wait, then we try to balance the zone (ie. try to free pages). More
about balance classzone() in section 2.2.6.

if (page)

return page;

If balance classzone() was successful in freeing pages, return them.

zone = zonelist->zones;

min = 1UL << order;

for (;;) {

zone_t *z = *(zone++);

if (!z)

break;

2.2. BUDDY SYSTEM 75

min += z->pages_min;

if (z->free_pages > min) {

page = rmqueue(z, order);

if (page)

return page;

}

}

We go through the zones one last time looking for free pages.

/* Don’t let big-order allocations loop */

if (order > 3)

return NULL;

If it was a big request, dump it.

/* Yield for kswapd, and try again */

current->policy |= SCHED_YIELD;

__set_current_state(TASK_RUNNING);

schedule();

goto rebalance;

Since the process can wait, set SCHED YIELD and yield the CPU for one re-
schedule. Then try to rebalance.

2.2.4 Function rmqueue()

File: mm/page_alloc.c

Prototype:

struct page * rmqueue(zone_t *zone, unsigned int order)

This function is responsible for finding out what order of pages we have to go
to, to satisfy the request. For example if there is no page block free to satisfy
the order=0 (1 page) request, then see if there is a free block of order=1 that
can be split into two order=0 pages.

mm/page_alloc.c

76 CHAPTER 2. PHYSICAL MEMORY ALLOCATION

free_area_t * area = zone->free_area + order;

unsigned int curr_order = order;

struct list_head *head, *curr;

unsigned long flags;

struct page *page;

spin_lock_irqsave(&zone->lock, flags);

do {

head = &area->free_list;

curr = memlist_next(head);

Lock the zone. Make head point to the head of the free list. Then memlist next

(head) will point curr to the list member of the first page in the list else if
the free list is empty, it will point to head itself.

if (curr != head) {

unsigned int index;

page = memlist_entry(curr, struct page, list);

Check if the list is empty, if not get the reference to the first page. The macro
memlist entry is just an alias for list entry.

if (BAD_RANGE(zone,page))

BUG();

memlist_del(curr);

index = page - zone->zone_mem_map;

Since we found a free page block, remove it from the current free list and get
the page index.

if (curr_order != MAX_ORDER-1)

MARK_USED(index, curr_order, area);

If the current order is of the maximum order (i.e. 9), then there is no buddy
bitmap for it, else toggle the appropriate bit in the buddy bitmap.

2.2. BUDDY SYSTEM 77

zone->free_pages -= 1UL << order;

page = expand(zone, page, index, order,

curr_order, area);

Subtract the number of pages being allocated from the free pages count and
call expand() to distribute the excess pages into different free lists. More on
this function below in section 2.2.5.

spin_unlock_irqrestore(&zone->lock, flags);

set_page_count(page, 1);

Unlock the zone and set the page count of the page to 1 thereby increasing
the reference count.

if (BAD_RANGE(zone,page))

BUG();

if (PageLRU(page))

BUG();

if (PageActive(page))

BUG();

return page;

}

Check for some impossible conditions and then return the pages.

curr_order++;

area++;

If we came here, then there were no free pages available in that order, so now
we have to go through the next higher order.

} while (curr_order < MAX_ORDER);

spin_unlock_irqrestore(&zone->lock, flags);

return NULL;

We go through all the orders till we find a free page and return it. If we
could not find any free pages we just return NULL.

78 CHAPTER 2. PHYSICAL MEMORY ALLOCATION

2.2.5 Function expand()

File: mm/page_alloc.c

Prototype:

struct page * expand (zone_t *zone, struct page *page,

unsigned long index, int low,

int high, free_area_t * area)

This function is used to break up high order free page blocks to return the
page block of the requested order and then add the remaining pages into the
appropriate free lists updating the buddy bitmaps on the way. For example,
when an order(1) page is requested and only order(3) pages are available,
the order(3) page block has to be divided into 2 order(2) blocks and then
one order(2) block is again divided into 2 order(1) blocks, from which one is
returned.

unsigned long size = 1 << high;

low is the original order requested and high is where we had to start to get a
free block. If it turned out there was a free block of the right order to begin
with, no splitting will take place.

while (high > low) {

if (BAD_RANGE(zone,page))

BUG();

area--;

high--;

size >>= 1;

Mark that we are moving to the next area after we are finished shuffling the
free order lists. Size is now half as big because the order dropped by 1.

memlist_add_head(&(page)->list, &(area)->free_list);

MARK_USED(index, high, area);

Add the page to the free list for the ”lower” area note that the lower buddy
is put on the free list and the higher buddy is considered for allocation, or
splitting more if necessary.

mm/page_alloc.c

2.2. BUDDY SYSTEM 79

index += size;

page += size;

}

index is the page number inside this zone and page is the actual address.

if (BAD_RANGE(zone,page))

BUG();

return page;

2.2.6 Function balance classzone()

File: mm/page_alloc.c

Prototype:

struct page * balance_classzone(zone_t * classzone,

unsigned int gfp_mask,

unsigned int order,

int * freed)

This function is called when there is very little memory available and we
can’t wait for kswapd to get us some pages.

struct page * page = NULL;

int __freed = 0;

if (!(gfp_mask & __GFP_WAIT))

goto out;

If the request cannot wait, quit, as this is a slow path.

if (in_interrupt())

BUG();

current->allocation_order = order;

current->flags |= PF_MEMALLOC | PF_FREE_PAGES;

mm/page_alloc.c

80 CHAPTER 2. PHYSICAL MEMORY ALLOCATION

We set the PF FREE PAGES flag to indicate to free pages ok() to add the
pages being freed to the local free list of the current process instead of freeing
them proper.

__freed = try_to_free_pages(classzone, gfp_mask, order);

current->flags &= ~(PF_MEMALLOC | PF_FREE_PAGES);

The function try to free pages() is used to free some pages by shrinking
caches and swapping old pages to disk. More on this function in section 8.2.5.
Then we reset the flags.

if (current->nr_local_pages) {

At the moment nr local pages is being used as a flag to indicate if there is
a free page block on the local free list of the current process. The following
code is incomplete and might be clearer when newer patches of Andrea are
merged in. There is a mismatch between what free pages ok is actually
doing, and what balance classzone is expecting it to do. The following code
believes that there are many free blocks of different orders on the local free
list instead of one and tries to find the block of correct order and return that
to the process while freeing the rest of the page blocks in reverse order. So
we will skip over this piece of code until someone manages to complete it.

struct list_head * entry, * local_pages;

struct page * tmp;

int nr_pages;

local_pages = ¤t->local_pages;

if (likely(__freed)) {

/* pick from the last inserted so we’re lifo */

entry = local_pages->next;

do {

tmp = list_entry(entry, struct page, list);

if (tmp->index == order &&

memclass(page_zone(tmp), classzone)) {

list_del(entry);

current->nr_local_pages--;

2.2. BUDDY SYSTEM 81

set_page_count(tmp, 1);

page = tmp;

if (page->buffers)

BUG();

if (page->mapping)

BUG();

if (!VALID_PAGE(page))

BUG();

if (PageSwapCache(page))

BUG();

if (PageLocked(page))

BUG();

if (PageLRU(page))

BUG();

if (PageActive(page))

BUG();

if (PageDirty(page))

BUG();

break;

}

} while ((entry = entry->next) != local_pages);

}

nr_pages = current->nr_local_pages;

/* free in reverse order so that the global order will

* be lifo

*/

while ((entry = local_pages->prev) != local_pages) {

list_del(entry);

tmp = list_entry(entry, struct page, list);

__free_pages_ok(tmp, tmp->index);

if (!nr_pages--)

BUG();

}

current->nr_local_pages = 0;

}

out:

82 CHAPTER 2. PHYSICAL MEMORY ALLOCATION

*freed = __freed;

return page;

Chapter 3

Slab Allocator

The majority of memory allocation requests in the kernel are for small, fre-
quently used data structures. The physical page allocator only deals with
allocations in sizes of pages and makes no attempt to use the hardware as
cleanly as posssible. The slab allocator exists to serve three purposes. It
provide a pool of small memory buffers packed into pages to reduce internal
fragmentation. These are called the sizes caches. It provide pools of com-
monly used objects like mm struct’s to avoid the overhead of creating and
destroying complex objects. Last, but not least, it tries to use the hardware
cache as efficiently as possible.

The slab allocator used by linux is the same as the one outlined in Bon-
wick’s [7] paper. Some terminology:

cache
It is a store of recently used objects of the same type. In the slab
allocator, it is the highest logical unit of storage. It has a human
parse-able name like dentry cache etc.

slab
A slab is a container for objects and is made up of one or more page
frames. A cache consists of a number of slabs.

object
This is the smallest unit. It resides on the slab and would be something
like a single dentry.

The objective is that a single page can now be used to contain a number
of objects thus saving memory and avoiding internal fragmentation. The
slabs are organized into three types, full slabs, partial slabs and empty ones.

83

84 CHAPTER 3. SLAB ALLOCATOR

Partial slabs are used if available to avoid fragmentation. To see all informa-
tion on caches and slabs available in a system, type cat /proc/slabinfo to
see a list. The fields correspond to:

cache-name A human readable name such as vm area struct
num-active-objs Number of objects that are in use
total-objs How many are available in total including unused
obj-size The size of each object, typically small
num-active-slabs Number of slabs containing objects that are active
total-slabs How many in total
num-pages-per-slab The pages required to take one slab, typically 1

If SMP is enabled, two more fields will be displayed after a colon. These are

limit How many objects of this type can be assigned
batchcount How many can be assigned to each processor

This refer to the per-CPU object caches. To improve hardware utilization
and to reduce the number of locks needed for an allocation, a small pool of
objects is stored for each CPU. This is described further in Section 3.5

85

pages

object object

pages

 object object

pages

 object object

slabs_full

slabs

slabs_partial

slabs

slabs_free

 slabs

cache nextcachelastcache

Figure 3.1: Cache Structure for the Slab Allocator

86 CHAPTER 3. SLAB ALLOCATOR

3.1 Caches

The structure of a cache is contained within a struct kmem cache s type-
deffed to kmem cache t. Most of the struct is self-explanatory, but these
are the principle elements to be concerned with.

List related elements
struct list head slabs full List of full slabs
struct list head slabs partial List of partial slabs
struct list head slabs free List of free slabs
struct list head next Next cache in the chain
Object properties
char name[CACHE NAMELEN] Human readable name for the cache
unsigned int objsize Size of object
unsigned int flags Flags described later
unsigned int num Number of objects per slab
Object creation
void (*ctor)() Constructor function for an object
void (*dtor)() Destructor for object
SMP specific
cpucache t *cpudata[NR CPUS] Per-CPU cache of objects
unsigned int batchcount Number of objects that can exist in per-cpu

cache

The flags that can be assigned to a cache are as follows. This is taken
directly from include/linux/slab.h.

Principle Flags
SLAB HWCACHE ALIGN align objs on a h/w cache lines
SLAB NO REAP never reap from the cache
SLAB CACHE DMA use GFP DMA memory

With CONFIG SLAB DEBUG
SLAB DEBUG FREE Perform (expensive) checks on free
SLAB DEBUG INITIAL Call constructor even if slab is a bogus cre-

ation
SLAB RED ZONE Red zone objs in a cache to check for over-

flows
SLAB POISON Poison objects with known pattern for

trapping uninitialized data access

To ensure that callers of kmem cache create don’t use the wrong flags,

include/linux/slab.h

3.1. CACHES 87

the bitmask is compared against a CREATE MASK defined in slab.c. CRE-
ATE MASK consists of all the legal flags that can be used when creating a
cache. If an illegal flag is used, BUG() is invoked.

3.1.1 Cache Static Flags

The cache flags field is intended to give extra information about the slab.
The following two flags are intended for use within the slab allocator but are
not used much.

CFGS OFF SLAB
Indicates that the slabs for this cache are kept off-slab. This is discussed
further in Section 3.2.1

CFLGS OPTIMIZE
This flag is only ever set and never used

Other flags are exposed in include/linux/slab.h . These affect how the
allocator treats the slabs.
SLAB HWCACHE ALIGN Align the objects to the L1 CPU cache
SLAB NO REAP Never reap slabs in this cache
SLAB CACHE DMA Use memory from ZONE DMA

If CONFIG SLAB DEBUG is set at compile time, the following flags are
available
SLAB DEBUG FREE Perform expensive checks on free
SLAB DEBUG INITIAL After an object is freed, the constructor is

called with a flag set that tells it to check
to make sure it is initialised correctly

SLAB RED ZONE This places a marker at either end of objects
to trap overflows

SLAB POISON Poison objects with known a pattern for trap-
ping changes made to objects not allocated or
initialsed

To prevent callers using the wrong flags a CREATE MASK is defined
consisting of all the allowable flags.

3.1.2 Cache Dynamic Flags

The dflags field appears to have only one flag DFLGS GROWN but it is
important. The flag is set during kmem cache grow so that kmem cache reap

will be unlikely to choose the cache for reaping. When the function does find
a cache with this flag set, it skips the cache and removes the flag.

88 CHAPTER 3. SLAB ALLOCATOR

3.1.3 Cache Colouring

To utilize hardware cache better, the slab allocator will offset objects in differ-
ent slabs by different amounts depending on the amount of space left over in
the slab. The offset is in units of BYTES PER WORD unless SLAB HWCACHE ALIGN

is set in which case it is aligned to blocks of L1 CACHE BYTES for align-
ment to the L1 hardware cache.

During cache creation, it is calculated how many objects can fit on a slab
(See Section 3.1.5) and what the bytes wasted is. Based on that, two figures
are calculated for the cache desriptor
colour The number of different offset that can be used
colour off The amount to offset the objects at

With the objects offset, they will use different lines on the associative
hardware cache. Therefore, objects from slabs are less likely to overwrite
each other in memory.

The result of this is easiest explained with example. Let us say that
s mem (the address of the first object) on the slab is 0 for convinience, that
100 bytes are wasted on the slab and alignment is to be at 32 bytes to the
L1 Hardware Cache on a Pentium 2.

In this scenario, the first slab created will have it’s objects start at 0. The
second will start at 32, the third at 64, the fourth at 96 and the fifth will
start back at 0. With this, objects from each of the slabs will not hit the
same hardware cache line on the CPU.

3.1.4 Creating a Cache

The following tasks are performed by the function kmem cache create in
order to create a cache.

• Perform basic sanity checks for bad usage

• Perform debugging checks if CONFIG SLAB DEBUG is set

• Allocate a kmem cache t from the cache cache slab cache

• Align the object size to the word size

• Calculate how many objects will fit on a slab

• Align the slab size to the hardware cache

• Calculate colour offsets

3.1. CACHES 89

kmem_cache_create

kmem_find_general_cachep kmem_cache_alloc kmem_cache_estimate enable_cpucache

kmem_tune_cpucache

Figure 3.2: kmem cache create

• Initialise remaining fields in cache descriptor

• Add the new cache to the cache chain

3.1.4.1 Function kmem cache create()

File: mm/slab.c

Prototype:

kmem_cache_t *

kmem_cache_create(const char *name,

size_t size,

size_t offset,

unsigned long flags,

void (*ctor)(void*, kmem_cache_t *, unsigned long),

void (*dtor)(void*, kmem_cache_t *, unsigned long))

This function is responsible for creating new caches and adding them to
the cache chain. For clarity, debugging information and sanity checks will be
ignored as they are only important during development and secondary to the
slab allocator itself. The only check that is important is the check of flags
against the CREATE MASK as the caller may request flags that are simply
not available.

mm/slab.c

90 CHAPTER 3. SLAB ALLOCATOR

The arguments to kmem cache create are as follows

const char *name Human readable name of the cache
size t size Size of the slab to create
size t offset Offset between each object (color)
unsigned long flags Flags to assign to the cache as described above
void (*ctor)() Pointer to constructor function
void (*dtor)() Pointer to destructor

The whole beginning of the function is all debugging checks so we’ll start
with the last sanity check

/*

* Always checks flags, a caller might be

* expecting debug support which isn’t available.

*/

BUG_ON(flags & ~CREATE_MASK);

CREATE MASK is the full set of flags that are allowable. If debugging
flags are used when they are not available, BUG will be called.

cachep = (kmem_cache_t *) kmem_cache_alloc

(&cache_cache, SLAB_KERNEL);

if (!cachep)

goto opps;

memset(cachep, 0, sizeof(kmem_cache_t));

Request a kmem cache t from the cache cache. The cache cache is stati-
cally initialised to avoid a chicken and egg problem, see section 3.6

/* Check that size is in terms of words.

* This is needed to avoid unaligned accesses

* for some archs when redzoning is used, and makes

* sure any on-slab bufctl’s are also correctly aligned.

*/

if (size & (BYTES_PER_WORD-1)) {

size += (BYTES_PER_WORD-1);

size &= ~(BYTES_PER_WORD-1);

printk("%sForcing size word alignment - %s\n",

func_nm, name);

}

3.1. CACHES 91

Comment says it all really. The next block is debugging code so is skipped
here.

align = BYTES_PER_WORD;

if (flags & SLAB_HWCACHE_ALIGN)

align = L1_CACHE_BYTES;

This will align the object size to the system word size for quicker retrieval.
If the wasted space is less important than good L1 cache performance, the
alignment will be made L1 CACHE BYTES.

if (size >= (PAGE_SIZE>>3))

/*

* Size is large, assume best to place

* the slab management obj off-slab

* (should allow better packing of objs).

*/

flags |= CFLGS_OFF_SLAB;

Comment says it all really

if (flags & SLAB_HWCACHE_ALIGN) {

while (size < align/2)

align /= 2;

size = (size+align-1)&(~(align-1));

}

If the cache is SLAB HWCACHE ALIGN, it’s aligning on the size of
L1 CACHE BYES which is quiet large, 32 bytes on an Intel. So, align is
adjusted to that two objects could fit in a cache line. If 2 would fit, then
try 4, until as many objects are packed in. Then size is adjusted to the new
alignment

/* Cal size (in pages) of slabs, and the num

* of objs per slab. This could be made much more

* intelligent. For now, try to avoid using high

* page-orders for slabs. When the gfp() funcs

* are more friendly towards high-order requests,

* this should be changed.

*/

do {

unsigned int break_flag = 0;

92 CHAPTER 3. SLAB ALLOCATOR

cal_wastage:

kmem_cache_estimate(cachep->gfporder, size, flags,

&left_over, &cachep->num);

Comment says it all

if (break_flag)

break;

if (cachep->gfporder >= MAX_GFP_ORDER)

break;

if (!cachep->num)

goto next;

if (flags & CFLGS_OFF_SLAB &&

cachep->num > offslab_limit) {

/* Oops, this num of objs will cause problems. */

cachep->gfporder--;

break_flag++;

goto cal_wastage;

}

The break flag is set so that the gfporder is reduced only once when off-
slab slab t’s are in use. The second check is so the order doesn’t get higher
than whats possible. If num is zero, it means the gfporder is too low and
needs to be increased. The last check is if the slab t is offslab. There is a
limit to how many objects can be managed off-slab. If it’s hit, the order is
reduced and kmem cache estimate is called again.

/*

* The Buddy Allocator will suffer if it has to deal with

* too many allocators of a large order. So while large

* numbers of objects is good, large orders are not so

* slab_break_gfp_order forces a balance

*/

if (cachep->gfporder >= slab_break_gfp_order)

break;

Comment says it all

if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))

break; /* Acceptable internal fragmentation. */

This is a rough check for internal fragmentation. If the wastage as a
fraction of the total size of the cache is less than one eight, it is acceptable

3.1. CACHES 93

next:

cachep->gfporder++;

} while (1);

This will increase the order to see if it’s worth using another page to
balance how many objects can be in a slab against the slab break gfp order
and internal fragmentation.

if (!cachep->num) {

printk("kmem_cache_create: couldn’t create cache %s.\n",

name);

kmem_cache_free(&cache_cache, cachep);

cachep = NULL;

goto opps;

}

The objects must be too large to fit into the slab so clean up and goto
opps that just returns.

slab_size = L1_CACHE_ALIGN(cachep->num *

sizeof(kmem_bufctl_t)+sizeof(slab_t))

The size of a slab t is the number of objects by the size of the kmem bufctl
for each of them plus the size of the slab t struct itself presuming it’s kept
on-slab.

if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {

flags &= ~CFLGS_OFF_SLAB;

left_over -= slab_size;

}

The calculation for slab size included slab t even if the slab t would be
off-slab. These checks see if it would fit on-slab and if it would, place it.

/* Offset must be a multiple of the alignment. */

offset += (align-1);

offset &= ~(align-1);

if (!offset)

offset = L1_CACHE_BYTES;

cachep->colour_off = offset;

cachep->colour = left_over/offset;

94 CHAPTER 3. SLAB ALLOCATOR

offset is the offset between each object so that the slab is coloured so that
each object would get different cache lines.

/* init remaining fields */

if (!cachep->gfporder && !(flags & CFLGS_OFF_SLAB))

flags |= CFLGS_OPTIMIZE;

cachep->flags = flags;

cachep->gfpflags = 0;

if (flags & SLAB_CACHE_DMA)

cachep->gfpflags |= GFP_DMA;

spin_lock_init(&cachep->spinlock);

cachep->objsize = size;

INIT_LIST_HEAD(&cachep->slabs_full);

INIT_LIST_HEAD(&cachep->slabs_partial);

INIT_LIST_HEAD(&cachep->slabs_free);

if (flags & CFLGS_OFF_SLAB)

cachep->slabp_cache =

kmem_find_general_cachep(slab_size,0);

cachep->ctor = ctor;

cachep->dtor = dtor;

/* Copy name over so we don’t have

* problems with unloaded modules */

strcpy(cachep->name, name);

This just copies the information into the kmem cache t and initializes it’s
fields. kmem find general cachep finds the appropriate sized sizes cache to
allocate a slab descriptor from when the slab manager is kept off-slab.

#ifdef CONFIG_SMP

if (g_cpucache_up)

enable_cpucache(cachep);

#endif

If SMP is available, enable cpucache will create a per CPU cache of ob-
jects for this cache and set proper values for avail and limit based on how
large each object is. See Section 3.5 for more details.

3.1. CACHES 95

/*

* Need the semaphore to access the chain.

* Cycle through the chain to make sure there

* isn’t a cache of the same name available.

*/

down(&cache_chain_sem);

{

struct list_head *p;

list_for_each(p, &cache_chain) {

kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);

/* The name field is constant - no lock needed. */

if (!strcmp(pc->name, name))

BUG();

}

}

Comment covers it

/* There is no reason to lock our new cache before we

* link it in - no one knows about it yet...

*/

list_add(&cachep->next, &cache_chain);

up(&cache_chain_sem);

opps:

return cachep;

}

3.1.5 Calculating the Number of Objects on a Slab

During cache creation, it is determined how many objects can be stored in a
slab and how much wasteage there will be. The following function calculates
how many objects may be stored, taking into account if the slab and bufctl’s
must be stored on-slab.

3.1.5.1 Function kmem cache estimate()

File: mm/slab.c

Prototype:

mm/slab.c

96 CHAPTER 3. SLAB ALLOCATOR

static void kmem_cache_estimate (unsigned long gfporder, size_t size,

int flags, size_t *left_over, unsigned int *num)

{

gfporder
The 2gfporder number of pages to allocate for each slab

size
The size of each object

flags
The cache flags. See Section 3.1.1

left over
The number of bytes left over in the slab. Returned to caller

num
The number of objects that will fit in a slab. Returned to caller

int i;

size_t wastage = PAGE_SIZE<<gfporder;

size_t extra = 0;

size_t base = 0;

wastage is decremented through the function. It starts with the maximum
possible amount of wastage.

if (!(flags & CFLGS_OFF_SLAB)) {

base = sizeof(slab_t);

extra = sizeof(kmem_bufctl_t);

}

base is where usable memory in the slab starts. If the slab descriptor is
kept on cache, the base begins at the end of the slab t struct and the number
of bytes needed to store the bufctl is the size of kmem bufctl t. extra is the
number of bytes needed to store kmem bufctl t

i = 0;

while (i*size + L1_CACHE_ALIGN(base+i*extra) <= wastage)

i++;

3.1. CACHES 97

i becomes the number of objects the slab can hold

This counts up the number of objects that the cache can store. i*size

is the amount of memory needed to store the object itself.

L1 CACHE ALIGN(base+i*extra) is slightly trickier. This is calculating
the amount of memory needed to store the kmem bufctl t of which one exists
for every object in the slab. As it is at the beginning of the slab, it is L1 cache
aligned so that the first object in the slab will be aligned to hardware cache.
i*extra will calculate the amount of space needed to hold a kmem bufctl t
for this object. As wastage starts out as the size of the slab, it’s use is
overloaded here.

if (i > 0)

i--;

if (i > SLAB_LIMIT)

i = SLAB_LIMIT;

Because the previous loop counts until the slab overflows, the number of
objects that can be stored is i-1.

SLAB LIMIT is the absolute largest number of objects a slab can store.
Is is defined as 0xffffFFFE as this the largest number kmem bufctl t, which
is an unsigned int, can hold

*num = i;

wastage -= i*size;

wastage -= L1_CACHE_ALIGN(base+i*extra);

*left_over = wastage;

}

• num is now the number of objects a slab can hold

• Take away the space taken up by all the objects from wastage

• Take away the space taken up by the kmem bufctl t

• Wastage has now been calculated as the left over space in the slab

• Add the cache to the chain and return.

98 CHAPTER 3. SLAB ALLOCATOR

3.1.6 Growing a Cache

At this point, we have seen how the cache is created, but on creation, it
is an empty cache with empty lists for it’s slab full, slab partial and
slabs free.

This section will show how a cache is grown when no objects are left in
the slabs partial list and there is no slabs in slabs free. The principle
function for this is kmem cache grow. The tasks it takes are

kmem_cache_grow

kmem_getpages kmem_cache_init_objs kmem_cache_slabmgmt

__get_free_pages kmem_cache_alloc

__kmem_cache_alloc

kmem_cache_alloc_head kmem_cache_alloc_one_tail

Figure 3.3: kmem cache grow

• Perform basic sanity checks to guard against bad usage

• Calculate colour offset for objects in this slab

• Allocate memory for slab and acquire a slab descriptor

3.1. CACHES 99

• Link the pages used for the slab to the slab and cache descriptors (See
Section 3.2

• Initalise objects in the slab

• Add the slab to the cache

3.1.6.1 Function kmem cache grow()

File: mm/slab.c

Prototype:

int kmem_cache_grow (kmem_cache_t * cachep,

int flags)

When there is no partial of free slabs left, the cache has to grow by
allocating a new slab and placing it on the free list. It is quiet long but not
too complex.

slab_t *slabp;

struct page *page;

void *objp;

size_t offset;

unsigned int i, local_flags;

unsigned long ctor_flags;

unsigned long save_flags;

/* Be lazy and only check for valid flags here,

* keeping it out of the critical path in kmem_cache_alloc().

*/

if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))

BUG();

if (flags & SLAB_NO_GROW)

return 0;

Straight forward. Make sure we are not trying to grow a slab that
shouldn’t be grown.

if (in_interrupt() && (flags & SLAB_LEVEL_MASK)

!= SLAB_ATOMIC)

BUG();

mm/slab.c

100 CHAPTER 3. SLAB ALLOCATOR

Make sure that if we are in an interrupt that the appropriate ATOMIC
flags are set so we don’t accidently sleep.

ctor_flags = SLAB_CTOR_CONSTRUCTOR;

local_flags = (flags & SLAB_LEVEL_MASK);

if (local_flags == SLAB_ATOMIC)

/*

* Not allowed to sleep. Need to tell a

* constructor about this - it might need

* to know...

*/

ctor_flags |= SLAB_CTOR_ATOMIC;

Set the appropriate flags for growing a cache and set ATOMIC if neces-
sary. SLAB LEVEL MASK is the collection of GFP masks that determines
how the buddy allocator will behave.

/* About to mess with non-constant members - lock. */

spin_lock_irqsave(&cachep->spinlock, save_flags);

An interrupt safe lock has to be acquired because it’s possible for an
interrupt hander to affect the cache descriptor.

/* Get colour for the slab, and cal the next value. */

offset = cachep->colour_next;

cachep->colour_next++;

if (cachep->colour_next >= cachep->colour)

cachep->colour_next = 0;

offset *= cachep->colour_off;

The colour will affect what cache line each object is assigned to on the
CPU cache (See Section 3.1.3). This block of code says what offset to use
for this block of objects and calculates what the next offset will me. colour
is the number of different offsets that can be used hence colour next wraps
when it reaches colour

cachep->dflags |= DFLGS_GROWN;

cachep->growing++;

This two lines will ensure that this cache won’t be reaped for some time
(See Section 3.1.9). As the cache is grown, it doesn’t make sense that the
slab just allocated here would be deleted by kswapd in a short space of time.

3.1. CACHES 101

spin_unlock_irqrestore(&cachep->spinlock, save_flags);

Restore the lock

/* Get mem for the objs. */

if (!(objp = kmem_getpages(cachep, flags)))

goto failed;

Just a wrapper around alloc pages(). See Section 3.7

/* Get slab management. */

if (!(slabp = kmem_cache_slabmgmt(cachep,

objp, offset,

local_flags)))

goto opps1;

This will allocate a slab t struct to manage this slab. How this function
decides whether to place a slab t on or off the slab will be discussed later.

i = 1 << cachep->gfporder;

page = virt_to_page(objp);

do {

SET_PAGE_CACHE(page, cachep);

SET_PAGE_SLAB(page, slabp);

PageSetSlab(page);

page++;

} while (--i);

The struct page is used to keep track of the cachep and slabs (See Section
??). From the head, search forward for the cachep and search back for the
slabp. SET PAGE CACHE inserts the cachep onto the front of the list.
SET PAGE SLAB will place the slab on end of the list. PageSetSlab is a
macro which sets the PG slab bit on the page flags. The while loop will do
this for each page that was allocated for this slab.

kmem_cache_init_objs(cachep, slabp, ctor_flags);

This function, described in Section 3.3.1

spin_lock_irqsave(&cachep->spinlock, save_flags);

cachep->growing--;

102 CHAPTER 3. SLAB ALLOCATOR

Lock the cache so the slab can be inserted on the list and say that we are
not growing any more so that the cache will be considered for reaping again
later.

/* Make slab active. */

list_add_tail(&slabp->list, &cachep->slabs_free);

STATS_INC_GROWN(cachep);

cachep->failures = 0;

Add the slab to the list and set some statistics.

spin_unlock_irqrestore(&cachep->spinlock, save_flags);

return 1;

Unlock and return success.

opps1:

kmem_freepages(cachep, objp);

failed:

spin_lock_irqsave(&cachep->spinlock, save_flags);

cachep->growing--;

spin_unlock_irqrestore(&cachep->spinlock, save_flags);

return 0;

}

opps1 is reached if a slab manager could not be allocated. failed is reached
if pages could not be allocated for the slab at all.

3.1.7 Shrinking Caches

Periodically it is necessary to shrink a cache, for instance when kswapd
is woken as zones need to be balanced. Before a cache is shrinked, it is
checked to make sure it isn’t called from inside an interrupt. The code be-
hind kmem shrink cache() looks a bit convulated at first glance. It’s tasks
are

• Delete all objects in the per CPU caches

• Delete all slabs from slabs free unless the growing flag gets set

Two varieties of shrink functions are provided. kmem cache shrink re-
moves all slabs from slabs free and returns the number of pages freed as a
result. kmem cache shrink frees all slabs from slabs free and then verifies
that slabs partial and slabs full are empty. This is important during cache
destruction when it doesn’t matter how many pages are freed, just that the
cache is empty.

3.1. CACHES 103

kmem_cache_shrink

drain_cpu_caches __kmem_cache_shrink_locked

free_block smp_call_function_all_cpus kmem_slab_destroy

Figure 3.4: kmem cache shrink

3.1.7.1 Function kmem cache shrink()

File: mm/slab.c

Prototype:

int kmem_cache_shrink(kmem_cache_t *cachep)

int ret;

if (!cachep || in_interrupt() ||

!is_chained_kmem_cache(cachep))

BUG();

drain_cpu_caches(cachep);

drain cpu caches (Section 3.5.5.1) will try and remove the objects kept
available for a particular CPU that would have been allocated earlier with
kmem cache alloc batch.

spin_lock_irq(&cachep->spinlock);

ret = __kmem_cache_shrink_locked(cachep);

spin_unlock_irq(&cachep->spinlock);

Lock and shrink

mm/slab.c

104 CHAPTER 3. SLAB ALLOCATOR

return ret << cachep->gfporder;

As the number of slabs freed is returned, bit shifting it by gfporder
will give the number of pages freed. There is a similar function called
kmem cache shrink. The only difference with it is that it returns a boolean

on whether the whole cache is free or not.

3.1.7.2 Function kmem cache shrink locked()

File: mm/slab.c

Prototype:

int __kmem_cache_shrink_locked(kmem_cache_t *cachep)

This function cycles through all the slabs free in the cache and calls
kmem slab destory (described below) on each of them. The code is very
straight forward.

slab_t *slabp;

int ret = 0;

/* If the cache is growing, stop shrinking. */

while (!cachep->growing) {

struct list_head *p;

p = cachep->slabs_free.prev;

if (p == &cachep->slabs_free)

break;

If the list slabs free is empty, then both slabs free.prev and slabs free.next
point to itself. The above code checks for this condition and quits as there
are no empty slabs to free.

slabp = list_entry(cachep->slabs_free.prev, slab_t, list);

There is an empty slab available, so get a pointer to it.

mm/slab.c

3.1. CACHES 105

#if DEBUG

if (slabp->inuse)

BUG();

#endif

A bug condition where a partially used slab is in the free slab list.

list_del(&slabp->list);

Since we are going to free this slab, remove it from the slabs free list.

spin_unlock_irq(&cachep->spinlock);

kmem_slab_destroy(cachep, slabp);

ret++;

spin_lock_irq(&cachep->spinlock);

}

return ret;

Call kmem slab destroy() (which is discussed below) to actually do the
formalities of freeing the slab. Increment the value of ret, which is used to
count the number of slabs being freed.

3.1.7.3 Function kmem slab destroy()

File: mm/slab.c

Prototype:

void kmem_slab_destroy (kmem_cache_t *cachep,

slab_t *slabp)

This function cycles through all objects in a slab and does the required
cleanup. Before calling, the slab must have been unlinked from the cache.

if (cachep->dtor

#if DEBUG

|| cachep->flags & (SLAB_POISON | SLAB_RED_ZONE)

#endif

) {

mm/slab.c

106 CHAPTER 3. SLAB ALLOCATOR

If a destructor exists for this slab, or if DEBUG is enabled and the necessary
flags are present, continue.

int i;

for (i = 0; i < cachep->num; i++) {

void* objp = slabp->s_mem+cachep->objsize*i;

Cycle through all objects in the slab.

#if DEBUG

if (cachep->flags & SLAB_RED_ZONE) {

if (*((unsigned long*)(objp)) != RED_MAGIC1)

BUG();

if (*((unsigned long*)(objp + cachep->objsize

- BYTES_PER_WORD)) != RED_MAGIC1)

BUG();

objp += BYTES_PER_WORD;

}

#endif

if (cachep->dtor)

(cachep->dtor)(objp, cachep, 0);

If a destructor exists for this slab, then invoke it for the object.

#if DEBUG

if (cachep->flags & SLAB_RED_ZONE) {

objp -= BYTES_PER_WORD;

}

if ((cachep->flags & SLAB_POISON) &&

kmem_check_poison_obj(cachep, objp))

BUG();

#endif

}

}

kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);

kmem freepages() will call the buddy allocator to free the pages for the
slab.

3.1. CACHES 107

if (OFF_SLAB(cachep))

kmem_cache_free(cachep->slabp_cache, slabp);

If the slab t is kept off-slab, it’s cache entry must be removed.

3.1.8 Destroying Caches

Destroying a cache is yet another glorified list manager. It is called when a
module is unloading itself or is being destroyed. This is to prevent caches
with duplicate caches been created if the module is unloaded and loaded
several times.

The steps taken to destroy a cache are

• Delete the cache from the cache chain

• Shrink the cache to delete all slabs (See Section 3.1.7)

• Free any per CPU caches (kfree)

• Delete the cache descriptor from the cache cache (See Section: 3.3.4)

Figure 3.5 Shows the call graph for this task.

3.1.8.1 Function kmem cache destroy()

File: mm/slab.c

Prototype:

int kmem_cache_destroy (kmem_cache_t * cachep)

{

if (!cachep || in_interrupt() || cachep->growing)

BUG();

Sanity check. Make sure the cachep is not null, that an interrupt isn’t
trying to do this and that the cache hasn’t been marked growing, indicating
it’s in use

down(&cache_chain_sem);

Acquire the semaphore for accessing the cache chain

mm/slab.c

108 CHAPTER 3. SLAB ALLOCATOR

kmem_cache_destroy

kfree

kmem_cache_free

__kmem_cache_shrink

__kmem_cache_free __kmem_cache_shrink_locked

kmem_slab_destroy

kmem_freepages

Figure 3.5: kmem cache destroy

3.1. CACHES 109

if (clock_searchp == cachep)

clock_searchp = list_entry(cachep->next.next,

kmem_cache_t, next);

list_del(&cachep->next);

up(&cache_chain_sem);

• Acquire the semaphore for accessing the cache chain

• Acquire the list entry from the cache chain

• Delete this cache from the cache chain

• Release the cache chain semaphore

if (__kmem_cache_shrink(cachep)) {

printk(KERN_ERR "kmem_cache_destroy: Can’t free all objects %p\n",

cachep);

down(&cache_chain_sem);

list_add(&cachep->next,&cache_chain);

up(&cache_chain_sem);

return 1;

}

Shrink the cache to free all slabs (See Section 3.1.7) The shrink function
returns true if there is still slabs in the cache. If there is, the cache cannot
be destroyed so it is added back into the cache chain and the error reported

#ifdef CONFIG_SMP

{

int i;

for (i = 0; i < NR_CPUS; i++)

kfree(cachep->cpudata[i]);

}

#endif

If SMP is enabled, each per CPU data is freed using kfree

110 CHAPTER 3. SLAB ALLOCATOR

kmem_cache_reap

__free_block kmem_slab_destroy

kmem_cache_free_one kmem_freepages kmem_cache_free

Figure 3.6: kmem cache reap

kmem_cache_free(&cache_cache, cachep);

return 0;

}

Delete the cache descriptor from the cache cache

3.1.9 Cache Reaping

When the page allocator notices that memory is getting tight, it wakes
kswapd to begin freeing up pages. One of the first ways it accomplishes
this task is telling the slab allocator to reap caches. It has to be the slab al-
locator that selects the caches as other subsystems should not know anything
about the cache internals.

The call graph in Figure 3.6 is deceptively simple. The task of selecting
the proper cache to reap is quiet long. In case there is many caches in the
system, only REAP SCANLEN caches are examined in each call. The
last cache to be scanned is stored in the variable clock searchp so as not to
examine the same caches over and over again. For each scanned cache, the
reaper does the following

• Check flags for SLAB NO REAP and skip if set

3.1. CACHES 111

• If the cache is growing, skip it

• if the cache has grown recently (DFLGS GROWN is set in dflags), skip
it but clear the flag so it will be reaped the next time

• Count the number of free slabs in slabs free and calculate how many
pages that would free in the variable pages

• If the cache has constructors or large slabs, adjust pages to make it
less likely for the cache to be selected.

• If the number of pages that would be freed exceeds REAP PERFECT, free
half of the slabs in slabs free

• Otherwise scan the rest of the caches and select the one that would free
the most pages for freeing half of it’s slabs in slabs free

3.1.9.1 Function kmem cache reap()

File: mm/slab.c

Prototype:
There is three distinct sections to this function. The first is simple func-

tion preamble. The second is the selection of a cache to reap and the third
is the freeing of the slabs

int kmem_cache_reap (int gfp_mask)

{

slab_t *slabp;

kmem_cache_t *searchp;

kmem_cache_t *best_cachep;

unsigned int best_pages;

unsigned int best_len;

unsigned int scan;

int ret = 0;

The only parameter is the GFP flag. The only check made is against the
GFP WAIT flag. As kswapd can sleep, this flag is virtually worthless

if (gfp_mask & __GFP_WAIT)

down(&cache_chain_sem);

else

if (down_trylock(&cache_chain_sem))

return 0;

mm/slab.c

112 CHAPTER 3. SLAB ALLOCATOR

If the caller can sleep, then acquire the semaphore else, try and acquire
the semaphore and if not available, return

scan = REAP_SCANLEN;

best_len = 0;

best_pages = 0;

best_cachep = NULL;

searchp = clock_searchp;

REAP SCANLEN is the number of caches to examine. searchp to be the
last cache that was examined at the last reap

The next do..while loop scans REAP SCANLEN caches and selects a
cache to reap slabs from.

do {

unsigned int pages;

struct list_head* p;

unsigned int full_free;

if (searchp->flags & SLAB_NO_REAP)

goto next;

If SLAB NO REAP is set, slip immediately

spin_lock_irq(&searchp->spinlock);

Acquire an interrupt safe lock

if (searchp->growing)

goto next_unlock;

if (searchp->dflags & DFLGS_GROWN) {

searchp->dflags &= ~DFLGS_GROWN;

goto next_unlock;

}

If the cache is growing or has grown recently, skip it

#ifdef CONFIG_SMP

{

cpucache_t *cc = cc_data(searchp);

if (cc && cc->avail) {

3.1. CACHES 113

__free_block(searchp, cc_entry(cc),

cc->avail);

cc->avail = 0;

}

}

#endif

Free any per CPU objects to the global pool

full_free = 0;

p = searchp->slabs_free.next;

while (p != &searchp->slabs_free) {

slabp = list_entry(p, slab_t, list);

#if DEBUG

if (slabp->inuse)

BUG();

#endif

full_free++;

p = p->next;

}

pages = full_free * (1<<searchp->gfporder);

Count the number of slabs in the slabs free list and calculate the number
of pages all the slabs hold

if (searchp->ctor)

pages = (pages*4+1)/5;

If the objects have constructors, reduce the page count by one fifth to
make it less likely to be selected for reaping

if (searchp->gfporder)

pages = (pages*4+1)/5;

If the slabs consist of more than one page, reduce the page count by one
fifth. This is because high order pages are hard to acquire

114 CHAPTER 3. SLAB ALLOCATOR

if (pages > best_pages) {

best_cachep = searchp;

best_len = full_free;

best_pages = pages;

if (pages >= REAP_PERFECT) {

clock_searchp =

list_entry(searchp->next.next,

kmem_cache_t,next);

goto perfect;

}

}

If this is the best canditate found for reaping so far, check if it is perfect
for reaping. If this cache is perfect for reaping then update clock searchp

and goto perfect where half the slabs will be freed. Otherwise record the new
maximums. best len is recorded so that it is easy to know how many slabs
is half of the slabs in the free list

next_unlock:

spin_unlock_irq(&searchp->spinlock);

next:

searchp =

list_entry(searchp->next.next,kmem_cache_t,next);

} while (--scan && searchp != clock_searchp);

This next unlock label is reached if it was found the cache was growing
after acquiring the lock so the cache descriptor lock is released. Move to the
next entry in the cache chain and keep scanning until REAP SCANLEN is
reached or until the whole chain has been examined.

At this point a cache has been selected to reap from. The next block will
free half of the free slabs from the selected cache.

clock_searchp = searchp;

if (!best_cachep)

goto out;

Update clock searchp for the next cache reap. If a cache was not selected,
goto out to free the cache chain and exit

spin_lock_irq(&best_cachep->spinlock);

3.1. CACHES 115

Acquire the cache chain spinlock and disable interrupts

perfect:

best_len = (best_len + 1)/2;

for (scan = 0; scan < best_len; scan++) {

Adjust best len to be the number of slabs to free and free best len number
of slabs.

struct list_head *p;

if (best_cachep->growing)

break;

If the cache is growing, exit

p = best_cachep->slabs_free.prev;

if (p == &best_cachep->slabs_free)

break;

slabp = list_entry(p,slab_t,list);

Get a slab from the list and check to make sure there is slabs left to free
on it before acquiring the slab pointer.

#if DEBUG

if (slabp->inuse)

BUG();

#endif

list_del(&slabp->list);

STATS_INC_REAPED(best_cachep);

A debugging check if enabled. Remove the slab from the list as it’s about
to be destroyed. Update statistics if enabled.

spin_unlock_irq(&best_cachep->spinlock);

kmem_slab_destroy(best_cachep, slabp);

spin_lock_irq(&best_cachep->spinlock);

}

116 CHAPTER 3. SLAB ALLOCATOR

Release the cache descriptor while deleting the slab because the cache
descriptor is safe and move to the next slab to free in the cache

spin_unlock_irq(&best_cachep->spinlock);

ret = scan * (1 << best_cachep->gfporder);

out:

up(&cache_chain_sem);

return ret;

}

The requesite number of slabs has been freed to record the number of
pages that were freed, release the cache descriptor locks and return the result.

3.2 Slabs

As mentioned, a slab consists of one or more pages assigned to contain ob-
jects. The job of this struct is to manage the objects in the slab. The struct
to describe a slab is simple:

typedef struct slab_s {

struct list_head list;

unsigned long colouroff;

void *s_mem;

unsigned int inuse;

kmem_bufctl_t free;

} slab_t;

list
The head of the list this slab belongs to.

colouroff
The colour to help utilise the hardware cache better.

s mem
Starting address for objects.

inuse
Number of active objects in the slab.

free
Used for linking free objects together.

The array kmem bufctl t array is stored immediately after this structure.
See Section 3.4 for more details on the kmem bufctl t array.

3.2. SLABS 117

3.2.1 Storing the Slab Descriptor

The slab t struct has to be stored somewhere. It can be either stored off
slab in which case the memory will be allocated from one of the sizes caches.
Else it will be stored within the slab itself. The sizes caches are described in
a later section dealing with kmalloc. They are caches which store blocks of
memory of sizes that are powers of two.

The reader will note that given the slab manager or an object within the
slab, there does not appear to be a way to determine what slab or cache
they belong to. This is addressed by using the page→list that makes up
the cache. SET PAGE CACHE and SET PAGE SLAB use next and
prev on the page list to track what cache and slab an object belongs to. To
get the descriptors from the page, the macros GET PAGE CACHE and
GET PAGE SLAB are available. This is illustrated as best as possible in
Figure 3.7

pages

cache

page->list.next

slab

page->list.prev

object object

Figure 3.7: Page to Cache and Slab Relationship

Caches are linked together with the next field. Each cache consists
of one or more slabs which are blocks of memory of one or more pages.
Each slab contains multiple numbers of objects, possibly with gaps between
them so that they hit different cache lines. If, during cache creation, the
flag SLAB HWCACHE ALIGN is specified, the objsize is adjusted up to
L1 CACHE BYTES so that the objects will be cache aligned. This will cre-
ate the gaps between objects. The slab t or slab management structure may

118 CHAPTER 3. SLAB ALLOCATOR

be kept on the slab or off it. If on the slab, it is at the beginning. If off-cache,
it is stored in an appropriately sized memory cache.

cache->slabs_free

Slab Descriptor

slab_t kmem_bufctl_t array Object Object Object Object Object Object

Free Object Information

First Object Address (s_mem)

Figure 3.8: Slab With Descriptor On-Slab

Figure 3.9 illustrates how a cache uses a sizes cache to store the slab
descriptor.

The struct page‘s list element is used to track where cache t and slab t
are stored (see kmem cache grow). The list → next pointer points to
kmem cache t (the cache it belongs to) and list → prev points to slab t
(the slab it is part of). So given an object, we can easily find the associated
cache and slab through these pointers.

3.2.1.1 Function kmem cache slabmgmt()

File: mm/slab.c

Prototype:

slab_t * kmem_cache_slabmgmt (kmem_cache_t *cachep,

void *objp,

int colour_off,

int local_flags)

mm/slab.c

3.2. SLABS 119

Size-X Cache

slab_t kmem_bufctl_t

Object Object Object Object Object Object Object Object Object

First Object Address (s_mem)

cache

Figure 3.9: Slab With Descriptor Off-Slab

This function allocates a new slab t and places it in the correct place.

slab_t *slabp;

if (OFF_SLAB(cachep)) {

/* Slab management obj is off-slab. */

slabp = kmem_cache_alloc(cachep->slabp_cache,

local_flags);

if (!slabp)

return NULL;

The first check is to see if the slab t is kept off the slab. If it is, cachep →
slabp cache will be pointing to the cache of memory allocations large enough
to contain the slab t. The different size caches are the same ones used by
kmalloc.

} else {

slabp = objp+colour_off;

120 CHAPTER 3. SLAB ALLOCATOR

colour_off += L1_CACHE_ALIGN(cachep->num *

sizeof(kmem_bufctl_t)

+ sizeof(slab_t));

}

Otherwise the slab t struct is contained on the slab itself at the beginning
of the slab.

slabp->inuse = 0;

slabp->colouroff = colour_off;

slabp->s_mem = objp+colour_off;

return slabp;

The most important one to note here is the value of s mem. It’ll be set
to be at the beginning of the slab if the slab manager is off slab but at the
end of the slab t if it’s on slab.

3.2.1.2 Function kmem find general cachep()

File: mm/slab.c

Prototype:
If the slab descriptor is to be kept off-slab, this function, called during

cache creation will find the appropriate sizes cache to use and will be stored
within the cache descriptor in the field slabp cache.

kmem_cache_t * kmem_find_general_cachep (size_t size,

int gfpflags)

{

size is the size of the slab descriptor. gfpflags is always 0 as DMA
memory is not needed for a slab descriptor

cache_sizes_t *csizep = cache_sizes;

for (; csizep->cs_size; csizep++) {

if (size > csizep->cs_size)

continue;

break;

}

Starting with the smallest size, keep increasing the size until a cache is
found with buffers large enough to store the slab descriptor

mm/slab.c

3.3. OBJECTS 121

return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep :

csizep->cs_cachep;

}

Return either a normal or DMA sized cache depending on the gfpflags
passed in. In reality, only the cs cachep is ever passed back

3.3 Objects

This section will cover how objects are managed. At this point, most of the
real hard work has been completed by either the cache or slab managers.

3.3.1 Initializing Objects

When a slab is created, all the objects in it put in an initialised state. If a
constructor is available, it is called for each object and it is expected when
an object is freed, it is left in it’s initialised state. Conceptually this is very
simple, cycle through all objects and call the constructor and initialise the
kmem bufctl for it. The function kmem cache init objs is responsible for
initialising the objects.

3.3.1.1 Function kmem cache init objs()

File: mm/slab.c

Prototype:

void kmem_cache_init_objs (kmem_cache_t * cachep,

slab_t * slabp,

unsigned long ctor_flags)

This function is called to initialize all the objects on a slab once by
kmem cache grow when creating a new slab.

int i;

for (i = 0; i < cachep->num; i++) {

void* objp = slabp->s_mem+cachep->objsize*i;

This steps through the number of objects that can be contained onslab.
(cachep → objsize ∗ i) will give an offset from s mem where ith object is.
[note: s mem is used to point to the first object].

mm/slab.c

122 CHAPTER 3. SLAB ALLOCATOR

#if DEBUG

if (cachep->flags & SLAB_RED_ZONE) {

((unsigned long)(objp)) = RED_MAGIC1;

((unsigned long)(objp + cachep->objsize

- BYTES_PER_WORD)) = RED_MAGIC1;

objp += BYTES_PER_WORD;

}

#endif

If debugging is enabled, RED MAGIC1 will be written at the beginning
and end of the object. Later when the object is used, this will be checked
again. If the values are not still RED MAGIC1, it’s known that the object
was activated twice or else was overrun.

if (cachep->ctor)

cachep->ctor(objp, cachep, ctor_flags);

A constructor is called for the object if available. Users are warned that
a cache with a constructor can not allocate memory from itself because it
would end up recursively calling this.

#if DEBUG

if (cachep->flags & SLAB_RED_ZONE)

objp -= BYTES_PER_WORD;

This block of debugging code will adjust the address of objp to take
into account the size of RED MAGIC1 that was added before calling the
constructor. The constructor receives a pointer to the actual data block and
not the debugging marker.

if (cachep->flags & SLAB_POISON)

/* need to poison the objs */

kmem_poison_obj(cachep, objp);

This function won’t be discussed in detail. It simply fills an object with
POISON BYTES and marks the end with POISON END.

if (cachep->flags & SLAB_RED_ZONE) {

if (*((unsigned long*)(objp)) != RED_MAGIC1)

BUG();

if (*((unsigned long*)(objp + cachep->objsize

- BYTES_PER_WORD)) != RED_MAGIC1)

BUG();

}

#endif

3.3. OBJECTS 123

This checks to make sure RED MAGIC1 is preserved by the poisoning.

slab_bufctl(slabp)[i] = i+1;

}

This initialises the kmem bufctl t array. See Section 3.4

slab_bufctl(slabp)[i-1] = BUFCTL_END;

slabp->free = 0;

Mark the end of the kmem bufctl t array with BUFCTL END. free is set
to 0 so that the first object allocated will be the 0th object on the slab.

3.3.2 Allocating Objects

This section covers what is needed to allocate an object. The allocator be-
haves slightly different in the UP and SMP cases and will be treated seperatly
in this section. Figure 3.10 shows the basic call graph that is used to allocate
an object in the UP case.

kmem_cache_alloc

__kmem_cache_alloc

kmem_cache_alloc_head kmem_cache_alloc_one kmem_cache_alloc_one_tail kmem_cache_grow

Figure 3.10: kmem cache alloc UP

As is clear, there is four basic steps. The first step (head) covers basic
checking to make sure the allocation is allowable. The second step is to select
which slabs list to allocate from. This is one of slabs partial or slabs free.
If there is no slabs in slabs free, the cache is grown (See Section 3.1.6) to

124 CHAPTER 3. SLAB ALLOCATOR

create a new slab in slabs free. The final step is to allocate the object from
the selected slab.

The SMP case takes one futher step. Before allocating one object, it will
check to see if there is one available from the per-CPU cache and use it if
there is. If there is not, it will allocate batchcount number of objects in
bulk and place them in it’s per-cpu cache. See Section 3.5 for details.

3.3.2.1 Function kmem cache alloc()

File: mm/slab.c

Prototype:

void * __kmem_cache_alloc (kmem_cache_t *cachep,

int flags)

The function takes two parameters:

kmem cache t *cachep The cache to allocate from
int flags Flags for the allocation

The flags are defined in include/linux/slab.h and correspond to GFP
page flag options, mainly of important to the allocator. Callers sometimes
call with either SLAB or GFP flags. This section will only deal with the
SLAB flags and what they mean. They can be one of:

SLAB NOFS This flag tells the page free logic to not make any calls to
the file-system layer. This is important for the allocation
of buffer heads for instance where it is important the
file-system does not end up recursively calling itself

SLAB NOIO Do not start any IO. For example, in
try to free buffers(), no attempt to write out
busy buffer pages will be made if this slab flag is used

SLAB NOHIGHIO Treated the same as SLAB NOIO according to buffer.c
SLAB ATOMIC Allocations made with this flag may take whatever mea-

sures necessary to get a page without sleeping. This is
used for the buffer head emergency pool for instance.
The page allocator will not sleep when this flag is set.

SLAB USER This translates to say that the allocator may sleep, make
FS calls and engage in IO. In reality, the flag does not
appear to be used anywhere in the code and is probably
included to have a nice one to one mapping to the GFP
flags.

mm/slab.c
include/linux/slab.h

3.3. OBJECTS 125

SLAB KERNEL Used when the caller just wants the object to be allo-
cated and are not particular about what needs to be
done to get it. The caller will perform IO, sleep and can
make calls to the file-system.

SLAB NFS Supplied to provide a mapping to GFP NFS. In real-
ity, it is never used. The only caller that needs it uses
GFP NFS directly.

SLAB DMA Used to flag a cache that is the should allocate memory
suitable for use with DMA. This will make the allocation
from the sizes cache dealing with DMA and if the page
allocator is used, it’ll only allocate from ZONE DMA.

For completeness, there are two other SLAB flags which exist. They are:

SLAB LEVEL MASK This rarely used mask removes any bits from
the flags which the slab allocator is not aware
of.

SLAB NO GROW This flags a cache that the number of slabs
within it should not grow. It only appears
to be used by kmem cache grow but does not
appear to be set anywhere in the code.

They largely affect how the buddy allocator will behave later.
kmem cache alloc calls kmem cache alloc directly. It comes in two flavors,
UP and SMP.

3.3.2.2 Allocation on UP

With the #defines removed, this is what the function looks like.

void * __kmem_cache_alloc (kmem_cache_t *cachep, int flags)

{

unsigned long save_flags;

void* objp;

kmem_cache_alloc_head(cachep, flags);

kmem cache alloc head() is a simple sanity check. It asserts that the
wrong combination of SLAB DMA and GFP DMA are not used with the
flags.

try_again:

126 CHAPTER 3. SLAB ALLOCATOR

local_irq_save(save_flags);

objp = kmem_cache_alloc_one(cachep);

local_irq_restore(save_flags);

return objp;

The macro kmem cache alloc one which will be described in section 3.3.3
allocates an object if there is a partially allocated or completely free slab
available. local irq save disables interrupts and saves the flags. This will
guarantee synchronization which is needed for kmem cache alloc one. A
spinlock can not be used because an interrupt handler can not take out a
spinlock and an interrupt handler can call this function.

alloc_new_slab:

local_irq_restore(save_flags);

if (kmem_cache_grow(cachep, flags))

/* Someone may have stolen our objs.

* Doesn’t matter, we’ll

* just come back here again.

*/

goto try_again;

return NULL;

}

Note the label alloc new slab which has no goto apparently, is used in
kmem cache alloc one. We come here if there are no free or partially free
slabs available. So we grow the cache by one more slab and try again.

3.3.2.3 Allocation on SMP

There are two principle differences between allocations on UP and on SMP.
The first one is the use of spinlocks, they become necessary for SMP. The
second is that slabs and objects are bound to processors for better use
of hardware cache. We’ll see how this is achieved. First, this is what
kmem cache alloc looks like for the SMP case.

Most of this is the same as for the UP case so we’ll only deal with the
SMP related code.

void * __kmem_cache_alloc (kmem_cache_t *cachep, int flags)

{

unsigned long save_flags;

3.3. OBJECTS 127

void* objp;

kmem_cache_alloc_head(cachep, flags);

try_again:

local_irq_save(save_flags);

{

cpucache_t *cc = cc_data(cachep);

cc data is a macro which returns the cpucache s struct for this CPU. The
struct has two members avail and limit. avail is how many objects are
available and limit is the maximum number that this processor may have.

if (cc) {

if (cc->avail) {

STATS_INC_ALLOCHIT(cachep);

objp = cc_entry(cc)[--cc->avail];

If the cpucache t data is available, check to see if there is an object
available. If there is, allocate it. From the cc entry macro, it would appear
that the objects are stored in memory after the cpucache t .

} else {

STATS_INC_ALLOCMISS(cachep);

objp = kmem_cache_alloc_batch(cachep,cc,flags);

if (!objp)

goto alloc_new_slab_nolock;

}

Else, there isn’t an object available from the cache so more have to be al-
located. The function kmem cache alloc batch() will be discussed in detail
in section ??.

} else {

spin_lock(&cachep->spinlock);

objp = kmem_cache_alloc_one(cachep);

spin_unlock(&cachep->spinlock);

}

}

128 CHAPTER 3. SLAB ALLOCATOR

If a cpucache is not available, just allocate one object in the same way a
UP does it except that a spinlock is held.

local_irq_restore(save_flags);

return objp;

/* kmem_cache_alloc_one contains a goto to this label */

alloc_new_slab:

spin_unlock(&cachep->spinlock);

alloc_new_slab_nolock:

local_irq_restore(save_flags);

if (kmem_cache_grow(cachep, flags))

/* Someone may have stolen our objs.

* Doesn’t matter, we’ll

* just come back here again.

*/

goto try_again;

return NULL;

}

3.3.3 Macro kmem cache alloc one()

File: mm/slab.c

Prototype:

kmem_cache_alloc_one(cachep)

#define kmem_cache_alloc_one(cachep) \

({ \

struct list_head * slabs_partial, * entry; \

slab_t *slabp; \

\

slabs_partial = &(cachep)->slabs_partial; \

entry = slabs_partial->next; \

if (unlikely(entry == slabs_partial)) { \

struct list_head * slabs_free; \

slabs_free = &(cachep)->slabs_free; \

entry = slabs_free->next; \

if (unlikely(entry == slabs_free)) \

goto alloc_new_slab; \

mm/slab.c

3.3. OBJECTS 129

list_del(entry); \

list_add(entry, slabs_partial); \

} \

\

slabp = list_entry(entry, slab_t, list); \

kmem_cache_alloc_one_tail(cachep, slabp); \

})

This is nice and straight forward. It’s checks are simply

• If there is a partially filled slab, use it

• If there is a free slab, use it

• Otherwise goto alloc new slab to allocate a new slab. Another goto
will bring us back later.

3.3.3.1 Function kmem cache alloc one tail()

File: mm/slab.c

Prototype:

void * kmem_cache_alloc_one_tail (kmem_cache_t *cachep,

slab_t *slabp)

Once a slab is found that can be used, kmem cache alloc one tail() is
called. The main complexity in this function is in the debugging so lets
examine it in pieces:

void *objp;

STATS_INC_ALLOCED(cachep);

STATS_INC_ACTIVE(cachep);

STATS_SET_HIGH(cachep);

This just sets some stats about the usage of the cache.

/* get obj pointer */

slabp->inuse++;

objp = slabp->s_mem + slabp->free*cachep->objsize;

slabp->free=slab_bufctl(slabp)[slabp->free];

mm/slab.c

130 CHAPTER 3. SLAB ALLOCATOR

s mem is the pointer to the beginning of the objects within the slab and
free is the index of the first object on the slab’s free-list. Multiplying it by
the size of each object will make objp the address of a free object. slab bufctl
is a macro which casts kmem bufctl t to slab t and adds 1 to it effectively
giving the address of the next free object.

Without debugging, the objp would be returned as is, but with debugging
enabled, more work is done.

#if DEBUG

if (cachep->flags & SLAB_POISON)

if (kmem_check_poison_obj(cachep, objp))

BUG();

If an object is poisoned, it’ll be marked with POISON BYTES with
a POISON END at the end of it. If objects were accidently overlapped,
kmem cache poison obj will find POISON END at the wrong place and BUG
it.

if (cachep->flags & SLAB_RED_ZONE) {

/* Set alloc red-zone, and check old one. */

if (xchg((unsigned long *)objp, RED_MAGIC2)

!= RED_MAGIC1)

BUG();

if (xchg((unsigned long *)(objp+cachep->objsize

- BYTES_PER_WORD), RED_MAGIC2) != RED_MAGIC1)

BUG();

objp += BYTES_PER_WORD;

}

#endif

This checks for overflow of the area. When an object is inactive, it will
be marked at either end with RED MAGIC1. The object is now becoming
active to either end is now marked with RED MAGIC2. If another object
had overflowed, the magic number would have been overwritten so BUG is
called to signal that

return objp;

}

Return the object which has been allocated.

3.3. OBJECTS 131

3.3.3.2 Function kmem cache alloc batch()

File: mm/slab.c

Prototype:

void* kmem_cache_alloc_batch(kmem_cache_t* cachep,

cpucache_t* cc,

int flags)

kmem cache alloc batch() is very simple. It allocates batchcount number
of new objects and places each of them on the cpucache to be used for later
allocations. This leads to better cache utilization.

int batchcount = cachep->batchcount;

spin_lock(&cachep->spinlock);

while (batchcount--) {

Loop batchcount times

struct list_head * slabs_partial, * entry;

slab_t *slabp;

/* Get slab alloc is to come from. */

slabs_partial = &(cachep)->slabs_partial;

entry = slabs_partial->next;

Find a slab that is partially full

if (unlikely(entry == slabs_partial)) {

struct list_head * slabs_free;

slabs_free = &(cachep)->slabs_free;

entry = slabs_free->next;

If there isn’t a partial slab, find an empty one

if (unlikely(entry == slabs_free))

break;

If there isn’t a free one, break which will either return an object that has
been allocated or else return NULL which will grow the cache.

list_del(entry);

list_add(entry, slabs_partial);

}

mm/slab.c

132 CHAPTER 3. SLAB ALLOCATOR

Otherwise remove the slab from the list it’s on and place it on the
slabs partial list

slabp = list_entry(entry, slab_t, list);

cc_entry(cc)[cc->avail++] =

kmem_cache_alloc_one_tail(cachep, slabp);

}

Get a slabp from the slabs partial list and allocate one object in the same
way a UP does it.

spin_unlock(&cachep->spinlock);

if (cc->avail)

return cc_entry(cc)[--cc->avail];

return NULL;

Free the spinlock and return an object if possible. Otherwise return NULL
to the cache can be grown.

3.3.4 Object Freeing

This section covers what is needed to free an object. In many ways, it is
similiar to how objects are allocated and just like the allocation, there is a
UP and SMP flavour. The principle difference is that the SMP version frees
the object to the per CPU cache. Figure 3.11 shows the very simply call
graph used

3.3.4.1 Function kmem cache free()

File: mm/slab.c

Prototype:

void kmem_cache_free (kmem_cache_t *cachep, void *objp)

{

unsigned long flags;

#if DEBUG

CHECK_PAGE(virt_to_page(objp));

if (cachep != GET_PAGE_CACHE(virt_to_page(objp)))

BUG();

#endif

mm/slab.c

3.3. OBJECTS 133

kmem_cache_free

__kmem_cache_free

kmem_cache_free_one

Figure 3.11: kmem cache free

If debugging is enabled, the page will first be checked with
CHECK PAGE to make sure it is a slab page. Secondly the page list
will be examined to make sure it belongs to this cache (See Section ??)

local_irq_save(flags);

__kmem_cache_free(cachep, objp);

local_irq_restore(flags);

}

Interrupts are disabled to protect the path. kmem cache free will free
the object to the per CPU cache for the SMP case and to the global pool in
the normal case. Reenable interrupts.

3.3.4.2 Function kmem cache free()

File: mm/slab.c

Prototype:
This covers what the function does in the UP case. It is obvious the

object is just freed to the global pool. The SMP case will be dealt with in
the next section

static inline void __kmem_cache_free (kmem_cache_t *cachep, void* objp)

{

kmem_cache_free_one(cachep, objp);

}

mm/slab.c

134 CHAPTER 3. SLAB ALLOCATOR

3.3.4.3 Function kmem cache free()

File: mm/slab.c

Prototype:

This case is slightly more interesting.

static inline void __kmem_cache_free (kmem_cache_t *cachep, void* objp)

{

cpucache_t *cc = cc_data(cachep);

Get the data for this per CPU cache (See Section 3.5

CHECK_PAGE(virt_to_page(objp));

if (cc)

Make sure the page is a slab page. If a per CPU cache is available, try to
use it. This is not always available. During cache destruction for instance,
the per CPU caches are already gone

int batchcount;

if (cc->avail < cc->limit) {

STATS_INC_FREEHIT(cachep);

cc_entry(cc)[cc->avail++] = objp;

return;

}

If the number of available in the per CPU cache is below limit, then add
the object to the free list and return. Update statistics if enabled.

STATS_INC_FREEMISS(cachep);

batchcount = cachep->batchcount;

cc->avail -= batchcount;

free_block(cachep,

&cc_entry(cc)[cc->avail],batchcount);

cc_entry(cc)[cc->avail++] = objp;

return;

mm/slab.c

3.3. OBJECTS 135

The pool has overflowed so batchcount number of objects is going to be
freed to the global pool. Update the number of available (avail) objects.
Free a block of objects to the global cache. Free the requested object and
place it on the per CPU pool.

} else {

free_block(cachep, &objp, 1);

}

}

If the per CPU cache is not available, then free this object to the global
pool

3.3.4.4 Function kmem cache free one()

File: mm/slab.c

Prototype:

static inline void kmem_cache_free_one(kmem_cache_t *cachep, void *objp)

{

slab_t* slabp;

CHECK_PAGE(virt_to_page(objp));

slabp = GET_PAGE_SLAB(virt_to_page(objp));

Make sure the page is a slab page. Get a slab descriptor for the page.

#if DEBUG

if (cachep->flags & SLAB_DEBUG_INITIAL)

cachep->ctor(objp, cachep,

SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);

If SLAB DEBUG INITIAL is set, the constructor is called to verify the
object is in an initialised state

if (cachep->flags & SLAB_RED_ZONE) {

objp -= BYTES_PER_WORD;

if (xchg((unsigned long *)objp, RED_MAGIC1) !=

RED_MAGIC2)

BUG();

mm/slab.c

136 CHAPTER 3. SLAB ALLOCATOR

if (xchg((unsigned long *)(objp+cachep->objsize -

BYTES_PER_WORD), RED_MAGIC1) !=

RED_MAGIC2)

BUG();

}

Verify the red marks at either end of the object are still there. This will
check for writes beyound the boundaries of the object and for double frees

if (cachep->flags & SLAB_POISON)

kmem_poison_obj(cachep, objp);

if (kmem_extra_free_checks(cachep, slabp, objp))

return;

#endif

Poison the freed object with a known pattern. This function will confirm
the object is a part of this slab and cache. It will then check the free list
(bufctl) to make sure this is not a double free. See Section ??

{

unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;

slab_bufctl(slabp)[objnr] = slabp->free;

slabp->free = objnr;

}

Calculate the index for the object been freed. As this object is now free,
update the bufctl to reflect that. See Section 3.4

STATS_DEC_ACTIVE(cachep);

{

int inuse = slabp->inuse;

if (unlikely(!--slabp->inuse)) {

/* Was partial or full, now empty. */

list_del(&slabp->list);

list_add(&slabp->list, &cachep->slabs_free);

3.3. OBJECTS 137

If inuse reaches 0, the slab is free and is moved to the slabs free list

} else if (unlikely(inuse == cachep->num)) {

/* Was full. */

list_del(&slabp->list);

list_add(&slabp->list, &cachep->slabs_partial);

}

}

}

If the number in use equals the number of objects in a slab, it is full so
move it to the slabs full list

3.3.4.5 Function free block()

File: mm/slab.c

Prototype:
This function is only used in the SMP case when the per CPU cache gets

too full. It is used to free a batch of objects in bulk

static void free_block (kmem_cache_t* cachep, void** objpp, int len)

{

spin_lock(&cachep->spinlock);

__free_block(cachep, objpp, len);

spin_unlock(&cachep->spinlock);

}

The parameters are

cachep
The cache that objects are been freed from

objpp
Pointer to the first object to free

len
The number of objects to free

The code

• Acquire a lock to the cache descriptor

• Discussed in next section

• Release the lock

mm/slab.c

138 CHAPTER 3. SLAB ALLOCATOR

3.3.4.6 Function free block()

File: mm/slab.c

Prototype:
This function is trivial. Starting with objpp, it will free len number of

objects.

static inline void __free_block (kmem_cache_t* cachep,

void** objpp, int len)

{

for (; len > 0; len--, objpp++)

kmem_cache_free_one(cachep, *objpp);

}

3.4 Tracking Free Objects

The slab allocator has to have a quick and simple way of tracking where free
objects are on the partially filled slabs. It achieves this via a mechanism called
kmem bufctl t that is associated with each slab manager as obviously it is
up to the slab manager to know where it’s free objects are.

Historically, and according to the paper describing the slab allocator [7],
kmem bufctl t was a linked list of objects. In Linux 2.2.x, this struct was
a union of three items, a pointer to the next free object, a pointer to the slab
manager and a pointer to the object. Which it was depended on the state of
the object.

Today, the slab and cache a page belongs to is determined by the list field
in struct page illustrated in Figure 3.7 in Section 3.2

3.4.1 kmem bufctl t

The kmem bufctl t is simply an unsigned integer and is treated as an array
stored after the slab manager (See Section 3.2). The number of elements in
the array is the same as the number of objects on the slab.

typedef unsigned int kmem_bufctl_t;

As the array is kept after the slab descriptor and there is no pointer to
the first element directly, a helper macro slab bufctl is provided.

#define slab_bufctl(slabp) \

((kmem_bufctl_t *)(((slab_t*)slabp)+1))

mm/slab.c

3.4. TRACKING FREE OBJECTS 139

This seemingly cryptic macro is quiet simple when broken down. The
parameter slabp is to the slab manager. The block ((slab t*)slabp)+1

casts slabp to a slab t struct and adds 1 to it. This will give a slab t *

pointer to the beginning of the kmem bufctl t array. (kmem bufctl t *)

recasts that pointer back to the required type. The results in blocks of
code that contain slab bufctl(slabp)[i]. Translated that says, take a
pointer to a slab descriptor, offset it with slab bufctl to the beginning of the
kmem bufctl t array and give the ith element of the array.

The index to the next free object in the slab is stored in slab t→free

eliminating the need for a linked list to track free objects. When objects
are allocated or freed, this pointer is updated based on information in the
kmem bufctl t array.

3.4.2 Initialising the kmem bufctl t Array

When a cache is grown, alll the objects and the kmem bufctl t array on the
slab are initialised. The array is filled with the index of each object beginning
with 1 and ending with the marker BUFCTL END.

The value 0 is stored in slab t→free as the 0th object is the first free
object to be used. See section 3.3.1 to see the function which initialised the
array.

The idea is that for a given object n, the index of the next free object will
be stored in kmem bufctl t[n]. Looking at the array above, the next object
free after 0 is 1. After 1, there is two and so on.

3.4.3 Finding the Next Free Object

kmem cache alloc is the function which allocates an object. It uses the
function kmem cache alloc one tail (See Section 3.3.3.1) to allocate the
object and update the kmem bufctl t array.

slab t→free has the index of the first free object. The index of the next
free object is at kmem bufctl t[slab t→free]. In code terms, this looks like

objp = slabp->s_mem + slabp->free*cachep->objsize;

slabp->free=slab_bufctl(slabp)[slabp->free];

slabp→s mem is the index of the first object on the slab. slabp→free

is the index of the object to allocate and it has to be multipled by the size
of an object.

The index of the next free object to allocate is stored at
kmem bufctl t[slabp→free]. There is no pointer directly to the array hence

140 CHAPTER 3. SLAB ALLOCATOR

the helper macro slab bufctl is used. Note that the kmem bufctl t array is
not changed during allocations but that the elements that are unallocated
are unreachable. For example, after two allocations, index 0 and 1 of the
kmem bufctl t array are not pointed to by any other element.

3.4.4 Updating kmem bufctl t

The kmem bufctl t list is only updated when an object is freed in the function
kmem cache free one. The array is updated with this block of code

unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;

slab_bufctl(slabp)[objnr] = slabp->free;

slabp->free = objnr;

objp is the object about to be freed and objnr is it’s index.
kmem bufctl t[objnr] is updated to pointer to the current value of
slabp→free efficively placing the object pointed to by free on the pseudo
linked list. slabp→free is updated to the object been freed so that it will be
the next one allocated.

3.5 Per-CPU Object Cache

One of the tasks the slab allocator is dedicated to is improved hardware cache
utilization. An aim of high performance computing[?] in general is to use
data on the same CPU for as long as possible. Linux achieves this by trying
to keep objects in the same CPU cache with a Per-CPU object cache, called
a cpucache for each CPU in the system.

When allocating or freeing objects, they are placed in the cpucache. When
there is no objects free, a batch of objects is placed into the pool. When the
pool gets too large, half of them are removed and placed in the global cache.
This way the hardware cache will be used for as long as possible on the same
CPU.

3.5.1 Describing the Per-CPU Object Cache

Each cache descriptor has a pointer to an array of cpucaches, described in
the cache descriptor as

cpucache_t *cpudata[NR_CPUS];

3.5. PER-CPU OBJECT CACHE 141

This structure is very simple

typedef struct cpucache_s {

unsigned int avail;

unsigned int limit;

} cpucache_t;

avail is the number of free objects available on this cpucache

limit is the total number of free objects that can exist

A helper macro cc data is provided to give the cpucache for a given cache
and processor. It is defined as

#define cc_data(cachep) \

((cachep)->cpudata[smp_processor_id()])

This will take a given cache descriptor (cachep) and return a pointer from
the cpucache array (cpudata). The index needed is the ID of the current
processor, smp processor id().

Pointers to objects on the cpucache are placed immediatly after the cpu-
cache t struct. This is very similiar to how objects are stored after a slab
descriptor illustrated in Section ??.

3.5.2 Adding/Removing Objects from the Per-CPU
Cache

To prevent fragmentation, objects are always added or removed from the end
of the array. To add an object (obj) to the CPU cache (cc), the following
block of code is used

cc_entry(cc)[cc->avail++] = obj;

To remove an object

obj = cc_entry(cc)[--cc->avail];

cc entry is a helper major which gives a pointer to the first object in the
cpucache. It is defined as

#define cc_entry(cpucache) \

((void **)(((cpucache_t*)(cpucache))+1))

This takes a pointer to a cpucache, increments the value by the size of
the cpucache t descriptor giving the first object in the cache.

142 CHAPTER 3. SLAB ALLOCATOR

3.5.3 Enabling Per-CPU Caches

When a cache is created, it’s CPU cache has to be enabled and memory
allocated for it using kmalloc. The function enable cpucache is responsible
for deciding what size to make the cache and calling kmem tune cpucache
to allocate memory for it.

Obviously a CPU cache cannot exist until after the various sizes caches
have been enabled so a global variable g cpucache up is used to pre-
vent cpucache’s been enabled before it is possible. The function en-
able all cpucaches cycles through all caches in the cache chain and enables
their cpucache.

Once the CPU cache has been setup, it can be accessed without locking
as a CPU will never access the wrong cpucache so it is guarenteed safe access
to it.

3.5.3.1 Function enable all cpucaches()

File: mm/slab.c

Prototype:
This function locks the cache chain and enables the cpucache for every

cache. This is important after the cache cache and sizes cache have been
enabled.

static void enable_all_cpucaches (void)

{

struct list_head* p;

down(&cache_chain_sem);

p = &cache_cache.next;

Obtain the semaphore to the cache chain and get the first cache on the
chain

do {

kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);

enable_cpucache(cachep);

p = cachep->next.next;

} while (p != &cache_cache.next);

mm/slab.c

3.5. PER-CPU OBJECT CACHE 143

Cycle through the whole chain. For each cache on it, enable it’s cpucache.
Note that this will skip the first cache on the chain but cache cache doesn’t
need a cpucache as it’s so rarely used.

up(&cache_chain_sem);

}

Release the semaphore

3.5.3.2 Function enable cpucache()

File: mm/slab.c

Prototype:
This function calculates what the size of a cpucache should be based on

the size of the objects the cache contains before calling kmem tune cpucache

which does the actual allocation.

static void enable_cpucache (kmem_cache_t *cachep)

{

int err;

int limit;

if (cachep->objsize > PAGE_SIZE)

return;

if (cachep->objsize > 1024)

limit = 60;

else if (cachep->objsize > 256)

limit = 124;

else

limit = 252;

If an object is larger than a page, don’t create a per CPU cache as they
are too expensive. If an object is larger than 1KB, keep the cpu cache
below 3MB in size. The limit is set to 124 objects to take the size of the
cpucache descriptors into account. For smaller objects, just make sure the
cache doesn’t go above 3MB in size

err = kmem_tune_cpucache(cachep, limit, limit/2);

Allocate the memory for the cpucache.

mm/slab.c

144 CHAPTER 3. SLAB ALLOCATOR

if (err)

printk(KERN_ERR

"enable_cpucache failed for %s, error %d.\n",

cachep->name, -err);

}

Print out an error message if the allocation failed

3.5.3.3 Function kmem tune cpucache()

File: mm/slab.c

Prototype:
This function is responsible for allocating memory for the cpucaches.

For each CPU on the system, kmalloc gives a block of memory large
enough for one cpu cache and fills a cpupdate struct t struct. The function
smp call function all cpus then calls do ccupdate local which swaps
the new information with the old information in the cache descriptor.

static int kmem_tune_cpucache (kmem_cache_t* cachep, int limit, int

batchcount)

{

The parameters of the function are

cachep The cache this cpucache is been allocated for

limit The total number of objects that can exist in the cpucache

batchcount The number of objects to allocate in one batch when the cpu-
cache is empty

ccupdate_struct_t new;

int i;

/*

* These are admin-provided, so we are more graceful.

*/

if (limit < 0)

return -EINVAL;

if (batchcount < 0)

return -EINVAL;

if (batchcount > limit)

mm/slab.c

3.5. PER-CPU OBJECT CACHE 145

return -EINVAL;

if (limit != 0 && !batchcount)

return -EINVAL;

Sanity checks. They have to be made because this function can be called
as a result of writing to /proc/slabinfo .

memset(&new.new,0,sizeof(new.new));

if (limit) {

for (i = 0; i< smp_num_cpus; i++) {

cpucache_t* ccnew;

ccnew = kmalloc(sizeof(void*)*limit+

sizeof(cpucache_t), GFP_KERNEL);

if (!ccnew)

goto oom;

ccnew->limit = limit;

ccnew->avail = 0;

new.new[cpu_logical_map(i)] = ccnew;

}

}

Clear the ccupdate struct t struct. For every CPU on the system, allocate
memory for the cpucache. The size of it is the size of the descriptor plus
limit number of pointers to objects. The new cpucaches are stored in the
new array where they will be swapped into the cache descriptor later by
do ccupdate local().

new.cachep = cachep;

spin_lock_irq(&cachep->spinlock);

cachep->batchcount = batchcount;

spin_unlock_irq(&cachep->spinlock);

smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);

Fill in the rest of the struct and call smp call function all cpus which will
make sure each CPU gets it’s new cpucache.

146 CHAPTER 3. SLAB ALLOCATOR

for (i = 0; i < smp_num_cpus; i++) {

cpucache_t* ccold = new.new[cpu_logical_map(i)];

if (!ccold)

continue;

local_irq_disable();

free_block(cachep, cc_entry(ccold), ccold->avail);

local_irq_enable();

kfree(ccold);

}

The function do ccupdate local() swaps what is in the cache descriptor
with the new cpucaches. This block cycles through all the old cpucaches and
frees the memory.

return 0;

oom:

for (i--; i >= 0; i--)

kfree(new.new[cpu_logical_map(i)]);

return -ENOMEM;

}

3.5.4 Updating Per-CPU Information

When the per-cpu caches have been created or changed, each CPU has to
be told about it. It’s not sufficient to change all the values in the cache
descriptor as that would lead to cache coherency issues and spinlocks would
have to used to protect the cpucache’s. Instead a ccupdate t struct is
populated with all the information each CPU needs and each CPU swaps
the new data with the old information in the cache descriptor. The struct
for storing the new cpucache information is defined as follows

typedef struct ccupdate_struct_s

{

kmem_cache_t *cachep;

cpucache_t *new[NR_CPUS];

} ccupdate_struct_t;

The cachep is the cache been updated and the array new is of
the cpucache descriptors for each CPU on the system. The func-
tion smp function all cpus is used to get each CPU to call the

3.5. PER-CPU OBJECT CACHE 147

do ccupdate local function which swaps the information from ccup-
date struct t with the information in the cache descriptor.

Once the information has been swapped, the old data can be deleted.

3.5.4.1 Function smp function all cpus()

File: mm/slab.c

Prototype:

This calls the function func for all CPU’s. In the context of the slab
allocator, the function is do ccupdate local and the arguement is ccup-
date struct t.

static void smp_call_function_all_cpus(void (*func) (void *arg),

void *arg)

{

local_irq_disable();

func(arg);

local_irq_enable();

if (smp_call_function(func, arg, 1, 1))

BUG();

}

This function is quiet simply. First it disable interrupts locally and call
the function for this CPU. It then calls smp call function which makes sure
that every other CPU executes the function func. In the context of the slab
allocator, this will always be do ccupdate local.

3.5.4.2 Function do ccupdate local()

File: mm/slab.c

Prototype:

This function swaps the cpucache information in the cache descriptor with
the information in info for this CPU.

static void do_ccupdate_local(void *info)

{

ccupdate_struct_t *new = (ccupdate_struct_t *)info;

cpucache_t *old = cc_data(new->cachep);

mm/slab.c
mm/slab.c

148 CHAPTER 3. SLAB ALLOCATOR

The parameter passed in is a pointer to the ccupdate struct t passed to
smp call function all cpus. Part of the ccupdate struct t is a pointer
to the cache this cpucache belongs to. cc data returns the cpucache t for
this processor

cc_data(new->cachep) = new->new[smp_processor_id()];

new->new[smp_processor_id()] = old;

}

Place the new cpucache in cache descriptor. cc data returns the pointer to
the cpucache for this CPU. Replace the pointer in new with the old cpucache
so it can be deleted later by the caller of smp call function call cpus,
kmem tune cpucache for example

3.5.5 Draining a Per-CPU Cache

When a cache is been shrunk, it’s first step is to drain the cpucaches of any
objects they might have. This is so the slab allocator will have a clearer view
of what slabs can be freed or not. This is important because if just one object
in a slab is placed in a Per-CPU cache, that whole slab cannot be freed. If
the system is tight on memory, saving a few milliseconds on allocations is
the least of it’s trouble.

3.5.5.1 Function drain cpu caches()

File: mm/slab.c

Prototype:

static void drain_cpu_caches(kmem_cache_t *cachep)

{

ccupdate_struct_t new;

int i;

memset(&new.new,0,sizeof(new.new));

new.cachep = cachep;

down(&cache_chain_sem);

smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);

mm/slab.c

3.6. SLAB ALLOCATOR INITIALIZATION 149

This block blanks out the new ccupdate struct t, acquires the cache chain
semaphore and calls smp call function cpus to get all the cpucache informa-
tion for each cpu

for (i = 0; i < smp_num_cpus; i++) {

cpucache_t* ccold = new.new[cpu_logical_map(i)];

if (!ccold || (ccold->avail == 0))

continue;

local_irq_disable();

free_block(cachep, cc_entry(ccold), ccold->avail);

local_irq_enable();

ccold->avail = 0;

}

All the objects in each CPU are freed and the cpucache struct updated
to show that there is no available objects in it

smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);

up(&cache_chain_sem);

}

All the cpucaches have been updated so call smp call function all cpus to
place them all back in the cache descriptor again and release the cache chain
semaphore.

3.6 Slab Allocator Initialization

The first function called from start kernel is kmem cache init(). This takes
the following very simple steps

• Initialize a mutex for access to the cache chain

• Initialize the linked list for the cache chain

• Initialize the cache cache

• Sets the cache cache colour

The term cache chain is simply a fancy name for a circular linked list
of caches the slab allocator knows about. It then goes on to initialize a
cache of caches called kmem cache. This is a cache of objects of type
kmem cache t which describes information about the cache itself.

150 CHAPTER 3. SLAB ALLOCATOR

3.6.1 Initializing cache cache

This cache is initialized as follows

static kmem_cache_t cache_cache = {

slabs_full: LIST_HEAD_INIT(cache_cache.slabs_full),

slabs_partial: LIST_HEAD_INIT(cache_cache.slabs_partial),

slabs_free: LIST_HEAD_INIT(cache_cache.slabs_free),

objsize: sizeof(kmem_cache_t),

flags: SLAB_NO_REAP,

spinlock: SPIN_LOCK_UNLOCKED,

colour_off: L1_CACHE_BYTES,

name: "kmem_cache",

};

slabs full Standard list init
slabs partial Standard list init
slabs free Standard list init
objsize Size of the struct. See the kmem cache s struct
flags Make sure this cache can’t be reaped
spinlock Initialize unlocked
colour off Align the objects to the L1 Cache
name Name of the cache

3.6.1.1 Function kmem cache init()

File: mm/slab.c

Prototype:

void __init kmem_cache_init(void)

{

size_t left_over;

init_MUTEX(&cache_chain_sem);

INIT_LIST_HEAD(&cache_chain);

kmem_cache_estimate(0, cache_cache.objsize, 0,

&left_over, &cache_cache.num);

if (!cache_cache.num)

BUG();

cache_cache.colour = left_over/cache_cache.colour_off;

mm/slab.c

3.7. INTERFACING WITH THE BUDDY ALLOCATOR 151

cache_cache.colour_next = 0;

}

• Initialise the cache chain linked list

• Initialise the semaphore for access the cache chain

• This estimates the number of objects and amount of bytes wasted. See
Section 3.1.5.1

• Calculate the cache cache colour

3.7 Interfacing with the Buddy Allocator

The slab allocator doesn’t come with pages attached, it must ask the phys-
ical page allocator for it’s pages. For this two interfaces are provided,
kmem getpages and kmem freepages. They are basically wrappers around
the buddy allocators API so that slab flags will be taken into account for
allocations

3.7.0.1 Function kmem getpages()

File: mm/slab.c

Prototype:
This allocates pages for the slab allocator

static inline void * kmem_getpages (kmem_cache_t *cachep, unsigned long

flags)

{

void *addr;

flags |= cachep->gfpflags;

Whatever flags were requested for the allocation, append the cache flags
to it. The only flag it may append is GFP DMA if the cache requires DMA
memory

addr = (void*) __get_free_pages(flags, cachep->gfporder);

return addr;

}

Call the buddy allocator and return the pages or NULL if it failed

mm/slab.c

152 CHAPTER 3. SLAB ALLOCATOR

3.7.0.2 Function kmem freepages()

File: mm/slab.c

Prototype:
This frees pages for the slab allocator. Before it calls the buddy allocator

API, it will remove the PG slab bit from the page flags

static inline void kmem_freepages (kmem_cache_t *cachep, void *addr)

{

unsigned long i = (1<<cachep->gfporder);

struct page *page = virt_to_page(addr);

The original order for the allocation is stored in the cache descriptor. The
physical page allocator expects a struct page which virt to page provides.

while (i--) {

PageClearSlab(page);

page++;

}

Clear the PG slab bit for each page

free_pages((unsigned long)addr, cachep->gfporder);

}

Call the buddy allocator

3.8 Sizes Cache

Linux keeps two sets of caches for small memory allocations. One suitable
for use with DMA and the other suitable for normal use. The human read-
able names for these caches size-X cache and size-X(DMA) cache view-
able from /proc/cpuinfo. Information for each sized cache is stored in a
cache sizes t struct defined in mm/slab.c

typedef struct cache_sizes {

size_t cs_size;

kmem_cache_t *cs_cachep;

kmem_cache_t *cs_dmacachep;

} cache_sizes_t;

mm/slab.c

3.8. SIZES CACHE 153

cs size The size of the memory block

cs cachep The cache of blocks for normal memory use

cs dmacachep The cache of blocks for use with DMA

kmem cache sizes init() is called to create a set of caches of different
sizes. On a system with a page size of 4096, the smallest chunk is 32 bytes,
otherwise it is 64 bytes. Two caches will be created for every size, both of
them cacheline-aligned, and one suitable for ISA DMA. So the smallest caches
of memory are called s ize-32 and s ize-32(DMA). Caches for each subsequent
power of two will be created until two caches of size of 131072 bytes are
created. These will be used by kmalloc later.

static cache_sizes_t cache_sizes[] = {

#if PAGE_SIZE == 4096

{ 32, NULL, NULL},

#endif

{ 64, NULL, NULL},

{ 128, NULL, NULL},

{ 256, NULL, NULL},

{ 512, NULL, NULL},

{ 1024, NULL, NULL},

{ 2048, NULL, NULL},

{ 4096, NULL, NULL},

{ 8192, NULL, NULL},

{ 16384, NULL, NULL},

{ 32768, NULL, NULL},

{ 65536, NULL, NULL},

{131072, NULL, NULL},

{ 0, NULL, NULL}

As is obvious, this is a statis array that is zero terminated consisting of
buffers of succeeding powers of 2 from 25 to 217 . An array now exists that
describes each sized cache which must be initialised with caches at system
startup.

3.8.1 kmalloc

With the existance of the sizes cache, the slab allocator is able to offer a new
allocator function, kmalloc for use when small memory buffers are required.
When a request is received, the appropriate sizes cache is selected and an

154 CHAPTER 3. SLAB ALLOCATOR

object assigned from it. All the hard work is in cache allocation (See Section
??

void * kmalloc (size_t size, int flags)

{

cache_sizes_t *csizep = cache_sizes;

for (; csizep->cs_size; csizep++) {

if (size > csizep->cs_size)

continue;

return __kmem_cache_alloc(flags & GFP_DMA ?

csizep->cs_dmacachep : csizep->cs_cachep,

flags);

}

return NULL;

}

Go through all the available sizes until a cache is found that holds sizes
large enough for this allocation, then call kmem cache alloc() to allocate
from the cache as normal.

3.8.2 kfree

Just as there is a kmalloc function to allocate small memory objects for use,
there is a kfree for freeing it. As with kmalloc, the real work takes place
during object freeing (See Section 3.3.4)

void kfree (const void *objp)

{

kmem_cache_t *c;

unsigned long flags;

if (!objp)

return;

local_irq_save(flags);

/* CHECK_PAGE makes sure this is a slab cache. */

CHECK_PAGE(virt_to_page(objp));

/* The struct page list stores the

* pointer to the kmem_cache_t */

3.8. SIZES CACHE 155

c = GET_PAGE_CACHE(virt_to_page(objp));

__kmem_cache_free(c, (void*)objp);

local_irq_restore(flags);

}

156 CHAPTER 3. SLAB ALLOCATOR

Chapter 4

Non-Contiguous Memory
Allocation

The vmalloc interface provides us with functions to map non-contiguous page
frames into contiguous virtual memory pages. The free virtual memory ad-
dresses in the kernel space are used for this purpose. As mentioned previously
in page 4 with regard to the significance of PAGE OFFSET, the top 1GB
address space is used by the kernel to map all the available physical mem-
ory. After the mapping, there usually is a lot of space left. Eg. taking my
system having 192MB RAM as an example, all the RAM is directly mapped
from PAGE OFFSET to PAGE OFFSET + 192MB. So out of the total of
1GB address space, we are only using 192MB. The remaining 832MB (1024
- 192) of virtual address space can now be used by the vmalloc interface.
To account for cases where there is more physical memory than 1GB, some
memory is reserved. At the moment 128MB is being reserved (see page 11)
due to which the size of the normal zone is 896MB.

These allocations start from VMALLOC START which is the end of directly
mapped physical memory + a gap of 8MB (VMALLOC OFFSET) which is just a
safety net. To describe these memory areas, the following structure is used:

4.1 Structures

4.1.1 struct vm struct

struct vm_struct {

unsigned long flags;

void * addr;

unsigned long size;

157

158 CHAPTER 4. NON-CONTIGUOUS MEMORY ALLOCATION

struct vm_struct * next;

};

flags Used to specify how this area was allocated, through vmalloc() itself
or ioremap().

addr The starting virtual address of this allocation.

size The size of the allocation + 4k (padding between two areas).

next Used to link up all the structures.

These non-contiguous memory area descriptors are chained together on a
list whose head is pointed to by vmlist. The vmalloc interface is contained
in the file mm/vmalloc.c and provides functions for allocation, de-allocation,
reading, writing etc.

4.2 Allocation

4.2.1 Function vmalloc()

Prototypes:

void * vmalloc (unsigned long size)

vmalloc itself just takes size as a parameter and is a front end for the lower
layers.

return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM,

PAGE_KERNEL);

It makes sure that pages are allocated for the kernel and protects the pages
from been swapped out by accident by setting the PAGE KERNEL flag.

4.2.2 Function vmalloc()

Prototypes:

void * __vmalloc (unsigned long size,

int gfp_mask,

pgprot_t prot)

4.2. ALLOCATION 159

This does the real work of the allocation. Pages allocated will not be con-
tiguous in physical memory, only in the linear address space. Do not call
this function directly. Use vmalloc which will call with the correct flags and
protection.

void * addr;

struct vm_struct *area;

size = PAGE_ALIGN(size);

size is rounded to a multiple of page size (if size = 3440 Bytes, make it 4k).

if (!size || (size >> PAGE_SHIFT) > num_physpages) {

BUG();

return NULL;

}

If the size is 0 or the request is larger than the number of physical frames,
fail the allocation.

area = get_vm_area(size, VM_ALLOC);

if (!area)

return NULL;

The function get vm area() allocates a block of linear addresses that can fit
the allocation and returns a struct vm struct. Refer section 4.2.3

addr = area->addr;

if (vmalloc_area_pages(VMALLOC_VMADDR(addr),

size, gfp_mask, prot)) {

vfree(addr);

return NULL;

}

The function vmalloc area pages() begins the work of allocating the PMD,
PTE’s and finally the physical pages for the allocation (described in sec-
tion 4.2.4).

return addr;

Return the virtual address.

160 CHAPTER 4. NON-CONTIGUOUS MEMORY ALLOCATION

4.2.3 Function get vm area()

Prototypes:

struct vm_struct * get_vm_area(unsigned long size,

unsigned long flags)

This is a helper function for vmalloc to find a block of linear addresses large
enough to accommodate the size being allocated.

unsigned long addr;

struct vm_struct **p, *tmp, *area;

area = (struct vm_struct *)kmalloc(sizeof(*area), GFP_KERNEL);

if (!area)

return NULL;

First the slab allocator is called to allocate a piece of memory to store infor-
mation about the non-contiguous area.

size += PAGE_SIZE;

addr = VMALLOC_START;

The size is incremented by PAGE SIZE to give a gap mentioned at the be-
ginning of the section between each allocated area. addr is initially set to
VMALLOC START in case this is the first area to be allocated.

write_lock(&vmlist_lock);

for (p = &vmlist; (tmp = *p) ; p = &tmp->next) {

if ((size + addr) < addr)

goto out;

if (size + addr <= (unsigned long) tmp->addr)

break;

addr = tmp->size + (unsigned long) tmp->addr;

if (addr > VMALLOC_END-size)

goto out;

}

First the list is locked to protect the list. Then the vmlist is stepped through
and the checks are made as followed.

• Has we wrapped around the address space and overflowed ?

4.2. ALLOCATION 161

• If our allocation fits here, stop we found a place.

• Move addr to the end of the current vm struct and make sure we are
not past VMALLOC END.

If either check one or three fail, the label out is reached.

area->flags = flags;

area->addr = (void *)addr;

area->size = size;

area->next = *p;

*p = area;

write_unlock(&vmlist_lock);

return area;

A satisfactory area was found. We can insert the area into the list, and return
the address.

out:

write_unlock(&vmlist_lock);

kfree(area);

return NULL;

If we came here, we were unable to find a suitable area. So free the lock, free
the area we had assigned and return failure.

4.2.4 Function vmalloc area pages()

Prototypes:

int vmalloc_area_pages (unsigned long address,

unsigned long size,

int gfp_mask, pgprot_t prot)

This function begins doing the grunt work of assigning the linear space needed
for the allocation. It will allocate a PMD for each PGD entry that is needed
to cover the full linear space for this allocation.

pgd_t * dir;

unsigned long end = address + size;

int ret;

dir = pgd_offset_k(address);

spin_lock(&init_mm.page_table_lock);

162 CHAPTER 4. NON-CONTIGUOUS MEMORY ALLOCATION

dir is set to be the first PGD entry for the kernel page tables and then the
mm for the kernel is locked.

do {

pmd_t *pmd;

pmd = pmd_alloc(&init_mm, dir, address);

ret = -ENOMEM;

if (!pmd)

break;

This simply tries to allocate a PMD block for the address as it currently is. If
more than one PMD is required for the allocation, it will be allocated during
the next iteration of the while loop.

ret = -ENOMEM;

if (alloc_area_pmd(pmd, address, end - address,

gfp_mask, prot))

break;

This ret to -ENOMEM is dead code. alloc area pmd is discussed in the
section 4.2.5.

address = (address + PGDIR_SIZE) & PGDIR_MASK;

dir++;

ret = 0;

} while (address && (address < end));

This prepares to move to the next PGD if the amount of memory to be
allocated is larger than what one PGD can address and then cycles through
allocating PMD and PTE’s again.

spin_unlock(&init_mm.page_table_lock);

flush_cache_all();

return ret;

Free the lock and return back success or failure to vmalloc.

4.2. ALLOCATION 163

4.2.5 Function alloc area pmd()

Prototypes:

int alloc_area_pmd(pmd_t * pmd, unsigned long address,

unsigned long size, int gfp_mask,

pgprot_t prot)

This function is responsible for stepping through all the PMD’s required for
this allocation and calling alloc area pte to assign enough PTE’s for each
PMD.

unsigned long end;

address &= ~PGDIR_MASK;

end = address + size;

if (end > PGDIR_SIZE)

end = PGDIR_SIZE;

This is basic sanity checking and making sure the address has the lower bits
cleared so that the address is aligned to a PGD.

do {

pte_t * pte = pte_alloc(&init_mm, pmd, address);

if (!pte)

return -ENOMEM;

if (alloc_area_pte(pte, address, end - address,

gfp_mask, prot))

return -ENOMEM;

address = (address + PMD_SIZE) & PMD_MASK;

pmd++;

} while (address < end);

return 0;

This allocates a PTE for each PMD entry required for this allocation. First
it allocates the actual PTE entry and alloc area pte is responsible for finding
page frames for each of the entries. Once they are allocated, the address is
incremented, making sure it is aligned to a PMD entry.

4.2.6 Function alloc area pte()

Prototypes:

164 CHAPTER 4. NON-CONTIGUOUS MEMORY ALLOCATION

int alloc_area_pte (pte_t * pte, unsigned long address,

unsigned long size, int gfp_mask,

pgprot_t prot)

This function is used to create the actual PTE entries.

unsigned long end;

address &= ~PMD_MASK;

end = address + size;

if (end > PMD_SIZE)

end = PMD_SIZE;

This starts with the same sanity checks as alloc area pmd.

do {

struct page * page;

spin_unlock(&init_mm.page_table_lock);

page = alloc_page(gfp_mask);

spin_lock(&init_mm.page_table_lock);

This allocates a page frame for the PTE we are currently looking at. The
page table lock is released because it’s not required while a page is allocated
via the buddy algorithm.

if (!pte_none(*pte))

printk(KERN_ERR

"alloc_area_pte: page already exists\n");

if (!page)

return -ENOMEM;

The first check is a sanity check. If the buddy algorithm returns a page that
is swapped out or otherwise not present, there is something serious wrong.

set_pte(pte, mk_pte(page, prot));

address += PAGE_SIZE;

pte++;

} while (address < end);

return 0;

4.3. DE-ALLOCATION 165

This protects the page to make sure it is not swapped out or otherwise
interfered with. Then the next PTE is moved to so it will be allocated before
returning success.

4.3 De-Allocation

4.3.1 Function vfree()

Prototypes:

void vfree(void * addr)

This function takes the base address. It must be page aligned and the one
returned by vmalloc earlier. It cycles through the vm structs and ultimately
deallocate all the PMD’s, PTE’s and page frames previously allocated.

struct vm_struct **p, *tmp;

if (!addr)

return;

if ((PAGE_SIZE-1) & (unsigned long) addr) {

printk(KERN_ERR

"Trying to vfree() bad address (%p)\n", addr);

return;

}

write_lock(&vmlist_lock);

This is basic sanity checking. The first is to make sure a NULL address
wasn’t passed in and the second one is to make sure the address is page
aligned as all allocations should have been made on a page boundary. The
vmlist is then locked to protect it.

for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {

if (tmp->addr == addr) {

*p = tmp->next;

vmfree_area_pages(VMALLOC_VMADDR(tmp->addr)

,tmp->size);

write_unlock(&vmlist_lock);

kfree(tmp);

return;

166 CHAPTER 4. NON-CONTIGUOUS MEMORY ALLOCATION

}

}

This block searches through the vmlist until the correct vm struct is found for
this area. Once it’s found, vmfree area pages is called which steps through
the page tables in the same fashion vmalloc area pages did.

write_unlock(&vmlist_lock);

printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)",

addr);

If the area is not found, the vmlist is unlocked and an error message is printed
before returning.

4.3.2 Function vmfree area pages()

Prototypes:

void vmfree_area_pages(unsigned long address,

unsigned long size)

pgd_t * dir;

unsigned long end = address + size;

dir = pgd_offset_k(address);

This just sets dir to be the first PGD entry for the address.

flush_cache_all();

This has no effect on the x86, but in some architectures, the CPU cache has
to be explicitly told to flush itself.

do {

free_area_pmd(dir, address, end - address);

address = (address + PGDIR_SIZE) & PGDIR_MASK;

dir++;

} while (address && (address < end));

For each PGD that is used by this allocation, call free area pmd() on it so
that that all the PTE’s and page frames allocated can be freed. Afterwards
move the address on making sure it is aligned to a PGD.

4.3. DE-ALLOCATION 167

flush_tlb_all();

At this point, the page tables look very different to the TLB is invalid and
needs to be flushed before returning back.

4.3.3 Function free area pmd()

Prototypes:

void free_area_pmd(pgd_t * dir,

unsigned long address,

unsigned long size)

pmd_t * pmd;

unsigned long end;

if (pgd_none(*dir))

return;

if (pgd_bad(*dir)) {

pgd_ERROR(*dir);

pgd_clear(dir);

return;

}

Some sanity checking. If the function is called with a missing PGD, it already
has been freed. This could happen if an earlier vmalloc failed half way
through and vfree had to be called on the whole linear area. pgd bad makes
sure the PGD about to be freed isn’t either

• Not in main memory, which should never happen for vmalloc-ed mem-
ory.

• It’s read only.

• It’s marked as accessed or dirty.

pmd = pmd_offset(dir, address);

address &= ~PGDIR_MASK;

end = address + size;

if (end > PGDIR_SIZE)

end = PGDIR_SIZE;

168 CHAPTER 4. NON-CONTIGUOUS MEMORY ALLOCATION

Set pmd to be the first PMD to be freed. Make sure address is PGD aligned
and record what the end of this PGDIR is.

do {

free_area_pte(pmd, address, end - address);

address = (address + PMD_SIZE) & PMD_MASK;

pmd++;

} while (address < end);

This goes through every PTE referenced by this PMD and calls free area pte
on it so that the page frame can be freed.

4.3.4 Function free area pte()

Prototypes:

void free_area_pte(pmd_t * pmd,

unsigned long address,

unsigned long size)

free area pte is mainly sanity checking code to make sure a wrong page is
not freed by accident.

pte_t * pte;

unsigned long end;

if (pmd_none(*pmd))

return;

if (pmd_bad(*pmd)) {

pmd_ERROR(*pmd);

pmd_clear(pmd);

return;

}

pte = pte_offset(pmd, address);

address &= ~PMD_MASK;

end = address + size;

if (end > PMD_SIZE)

end = PMD_SIZE;

Similar sanity checks and principles to free area pmd.

4.4. READ/WRITE 169

do {

pte_t page;

page = ptep_get_and_clear(pte);

address += PAGE_SIZE;

pte++;

This is the beginning of the while loop which steps through every PTE we
can reach from this PMD. ptep get and clear retrieves the pte t entry and
then removes it from the page tables.

if (pte_none(page))

continue;

If it was not allocated because of a failed vmalloc or similar reason, continue
on as normal.

if (pte_present(page)) {

struct page *ptpage = pte_page(page);

if (VALID_PAGE(ptpage) && (!PageReserved(ptpage)))

__free_page(ptpage);

continue;

}

If the page is present, get the struct page for this PTE and hand it back to
the buddy allocator.

printk(KERN_CRIT

"Whee.. Swapped out page in kernel page table\n");

} while (address < end);

If the page was not present, it means it was swapped out which is a major
screwup so start shouting blue murder. In the normal scheme of things, all
the PTE’s will be freed for this PMD and the function returns quietly.

4.4 Read/Write

The read and write functions appear to be provided for character devices so
that they can read through memory that is vmalloc-ed in the same fashion
as a normal read on a character device would take place.

170 CHAPTER 4. NON-CONTIGUOUS MEMORY ALLOCATION

4.4.1 Function vread()

Prototypes:

long vread(char *buf, char *addr,

unsigned long count)

This reads an area of vmalloc-ed memory like a character device would. It
does not have to read from a ”valid” area. If the reader enters an area that
is not in use, it will put 0’s in the buf.

struct vm_struct *tmp;

char *vaddr, *buf_start = buf;

unsigned long n;

/* Don’t allow overflow */

if ((unsigned long) addr + count < count)

count = -(unsigned long) addr;

This overflow check is to make sure the caller doesn’t try to read off the end
of memory. If it would overflow, count is changed to just read to the end of
memory.

read_lock(&vmlist_lock);

for (tmp = vmlist; tmp; tmp = tmp->next) {

vaddr = (char *) tmp->addr;

if (addr >= vaddr + tmp->size - PAGE_SIZE)

continue;

This cycles through all the vmlists trying to find which vm struct this address
belongs to.

while (addr < vaddr) {

if (count == 0)

goto finished;

*buf = ’\0’;

buf++;

addr++;

count--;

}

4.4. READ/WRITE 171

Once we reach here, we have found the vm struct we need but there is nothing
to say that we are in a valid area to read from. If addr is not in a valid area,
the buffer is zero filled until either count bytes has been read or that the
vm struct area is reached. This could happen for instance if someone tried
to vread a large block of memory that crossed two vm struct’s.

n = vaddr + tmp->size - PAGE_SIZE - addr;

do {

if (count == 0)

goto finished;

*buf = *addr;

buf++;

addr++;

count--;

} while (--n > 0);

}

Here we have reached a valid vm struct so n is set to the number of bytes
that can be read before the end of the area can be read. This is to prevent
overflow. This block does a byte by byte read into buf until either count is
reached or the next vm struct needs to be read.

finished:

read_unlock(&vmlist_lock);

return buf - buf_start;

By here, all the bytes have been read or else there is no more vm structs to
read from. The lock is released and the number of bytes read is returned.

4.4.2 Function vwrite()

Prototypes:

long vwrite(char *buf, char *addr,

unsigned long count)

This is virtually identical to vread except for two important differences.

• Bytes written that are not to valid areas are simply discarded silently.

• In valid areas, the vm struct area is been written to rather than read
from.

172 CHAPTER 4. NON-CONTIGUOUS MEMORY ALLOCATION

struct vm_struct *tmp;

char *vaddr, *buf_start = buf;

unsigned long n;

/* Don’t allow overflow */

if ((unsigned long) addr + count < count)

count = -(unsigned long) addr;

read_lock(&vmlist_lock);

for (tmp = vmlist; tmp; tmp = tmp->next) {

vaddr = (char *) tmp->addr;

if (addr >= vaddr + tmp->size - PAGE_SIZE)

continue;

while (addr < vaddr) {

if (count == 0)

goto finished;

buf++;

addr++;

count--;

}

n = vaddr + tmp->size - PAGE_SIZE - addr;

do {

if (count == 0)

goto finished;

*addr = *buf;

buf++;

addr++;

count--;

} while (--n > 0);

}

finished:

read_unlock(&vmlist_lock);

return buf - buf_start;

Chapter 5

Process Virtual Memory
Management

5.1 Structures

5.1.1 struct mm struct

File: include/linux/sched.h

struct mm_struct {

struct vm_area_struct * mmap;

rb_root_t mm_rb;

struct vm_area_struct * mmap_cache;

pgd_t * pgd;

atomic_t mm_users;

atomic_t mm_count;

int map_count;

struct rw_semaphore mmap_sem;

spinlock_t page_table_lock;

struct list_head mmlist;

unsigned long start_code, end_code, start_data, end_data;

unsigned long start_brk, brk, start_stack;

unsigned long arg_start, arg_end, env_start, env_end;

unsigned long rss, total_vm, locked_vm;

unsigned long def_flags;

unsigned long cpu_vm_mask;

unsigned long swap_address;

unsigned dumpable:1;

173

include/linux/sched.h

174 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

mm_context_t context;

};

mmap
A linked list of VMAs belonging to this address space sorted by address.

mm rb
When the number of VMAs increase beyond a certain number, a red
black tree is also used to access them. mm rb points to the root node.

mmap cache
Points to the last VMA accessed.

pgd
Is the Page Global Directory of the process.

mm users
Number of process sharing this structure.

mm count
Number of non-user references to it + 1 (for all the users).

map count
Number of VMAs.

mmap sem
Semaphore used to serialize access to this structure.

page table lock
Protects page tables and the rss field from concurrent access.

mmlist
List of all active mm’s.These are globally strung together off
init mm.mmlist and are protected by mmlist lock.

start code
Points to the starting address of the code section.

end code
Points to the end address of the code section.

start data
Points to the starting address of the data section.

end data
Points to the end address of the data section.

5.1. STRUCTURES 175

start brk
Points to the start address of the heap area.

brk
Points to the end address of the heap area.

start stack
Points to the start address of the stack.

arg start
Points to the start address of the arguments.

arg end
Points to the end address of the arguments.

env start
Points to the start address of the environmet.

env end
Points to the end address of the environment.

rss
Number of pages currently in memory.

total vm
Total number of pages used by this process.

locked vm
Number of pages locked by this process (ie. unswappable pages).

def flags
The default flags for this address space.

cpu vm mask
A mask used to keep track of all the CPUs accessing this mm (and
have TLB entries). Used for TLB shootdown.

swap address
Used to store the last address swapped to disk. Set in swap out pmd

and used by swap out mm to find the VMA being swapped out.

dumpable
This bit is used as a flag which controls the creation of a core dump.

context
Used to store segment information.

176 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

5.1.2 struct vm area struct

File: include/linux/mm.h

This struct defines a memory VMM memory area. There is one of these
per VM-area/task. A VM area is any part of the process virtual memory
space that has a special rule for the page-fault handlers (ie a shared library,
the executable area etc).

struct vm_area_struct {

struct mm_struct * vm_mm;

unsigned long vm_start;

unsigned long vm_end;

struct vm_area_struct *vm_next;

pgprot_t vm_page_prot;

unsigned long vm_flags;

rb_node_t vm_rb;

struct vm_area_struct *vm_next_share;

struct vm_area_struct **vm_pprev_share;

struct vm_operations_struct * vm_ops;

unsigned long vm_pgoff;

struct file * vm_file;

unsigned long vm_raend;

void * vm_private_data;

};

vm mm
The address space we belong to.

vm start
Our start address within vm mm.

vm end
The first byte after our end address within vm mm.

vm next
Used to point to the next VMA in a list.

vm page prot
Access permissions of this VMA.

vm flags
Various flags describing this memory area.

include/linux/mm.h

5.2. CREATING A PROCESS ADDRESS SPACE 177

vm rb
A rb tree used to contain all the VMAs for faster access when more in
number.

vm next share
If this VMA is mapping a file, this field points to another VMA (dif-
ferent process), mapping (sharing) the same part of the file.

vm pprev share
Same function as above, but points to previous node in the list.

vm ops
A set of functions to act on this memory region.

vm pgoff
If we are mapping a file, this field gives us the offset within the file this
region maps in terms of number of pages.

vm file
If this memory region is mapping a file, this pointer is used to point to
it (can be NULL).

vm raend
Stores the file offset (from vm pgoff) till which the data will be read,
in the next read-ahead operation.

vm private data
Used by drivers to store their own data.

5.2 Creating a Process Address Space

5.2.1 Function copy mm()

File: kernel/fork.c

Prototype:

int copy_mm(unsigned long clone_flags,

struct task_struct * tsk)

This function is called from do fork() to create a new process address space.
The parameters of this function are:

clone flags The flags with which fork() has been called with.

kernel/fork.c

178 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

tsk The descriptor of the new task whose address space has to be created.

Depending on the various flags, the address space is either shared or dupli-
cated.

struct mm_struct * mm, *oldmm;

int retval;

tsk->min_flt = tsk->maj_flt = 0;

tsk->cmin_flt = tsk->cmaj_flt = 0;

tsk->nswap = tsk->cnswap = 0;

The memory related counters in the task descriptor are initialised. Briefly,
these counters are used as follows:

min flt Counts the number of minor page faults (ie. a new page had to be
allocated).

maj flt Counts the number of major page faults (ie. when ever a page had
to be loaded from the swap).

cmin flt Counts the number of minor page faults of its children.

cmaj flt Counts the number of major page faults of its children.

nswap Not used or updated anywhere, dead code.

cnswap Not used or updated anywhere, dead code.

tsk->mm = NULL;

tsk->active_mm = NULL;

/*

* Are we cloning a kernel thread?

*

* We need to steal a active VM for that..

*/

oldmm = current->mm;

if (!oldmm)

return 0;

5.2. CREATING A PROCESS ADDRESS SPACE 179

The current task is the parent of the task being created. So get a pointer to
its memory descriptor.

if (clone_flags & CLONE_VM) {

atomic_inc(&oldmm->mm_users);

mm = oldmm;

goto good_mm;

}

If the CLONE VM flag is set, then the new process shares the same memory
descriptor. So increment the counter mm users of the mm struct and goto
good mm where it is assigned to the new process.

retval = -ENOMEM;

mm = allocate_mm();

if (!mm)

goto fail_nomem;

If we came here, we need to create a new mm struct, so call allocate mm()

which returns a new descriptor from the slab cache (mm cachep).

/* Copy the current MM stuff.. */

memcpy(mm, oldmm, sizeof(*mm));

if (!mm_init(mm))

goto fail_nomem;

Next we copy the mm struct of parent to the newly created descriptor. Then
we initialize some of its fields by calling mm init() which is discussed further
in section ??.

if (init_new_context(tsk,mm))

goto free_pt;

180 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

The function init new context() is a no-op on i386.

down_write(&oldmm->mmap_sem);

retval = dup_mmap(mm);

up_write(&oldmm->mmap_sem);

if (retval)

goto free_pt;

Then we call dup mmap() to initialize the rest of the fields and also copy the
memory region descriptors (vm area struct). It is covered in section 5.2.2.

/*

* child gets a private LDT (if there was an LDT in the parent)

*/

copy_segments(tsk, mm);

If the parent task has an LDT (Local Descriptor Table), it is copied to the
new memory descriptor.

good_mm:

tsk->mm = mm;

tsk->active_mm = mm;

return 0;

We come here when the CLONE VM flag is set. We just point to (use) the
same memory descriptor as the parent.

free_pt:

mmput(mm);

5.2. CREATING A PROCESS ADDRESS SPACE 181

We couldn’t initialize the new mm struct descriptor successfully, so de-
allocate it.

fail_nomem:

return retval;

There is no memory available in the system, so return with an error.

5.2.2 Function dup mmap()

File: kernel/fork.c

Prototype:

int dup_mmap(struct mm_struct * mm)

This function is called to initialize some fields and memory region descriptors
of a mm struct.

struct vm_area_struct * mpnt, *tmp, **pprev;

int retval;

flush_cache_mm(current->mm);

This function is used to flush all pages belonging to the given mm from the
cache. This function is a no-op on the i386.

mm->locked_vm = 0;

mm->mmap = NULL;

mm->mmap_cache = NULL;

mm->map_count = 0;

mm->rss = 0;

mm->cpu_vm_mask = 0;

mm->swap_address = 0;

pprev = &mm->mmap;

Basic initialization.

kernel/fork.c

182 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

/*

* Add it to the mmlist after the parent.

* Doing it this way means that we can order the list,

* and fork() won’t mess up the ordering significantly.

* Add it first so that swapoff can see any swap entries.

*/

spin_lock(&mmlist_lock);

list_add(&mm->mmlist, ¤t->mm->mmlist);

mmlist_nr++;

spin_unlock(&mmlist_lock);

We add this new structure to the global list of address spaces immediately
after its parents address space. Then we increment the mmlist nr counter
which keeps track of the number of address spaces in the list. Access to this
list is protected by mmlist lock.

for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {

struct file *file;

retval = -ENOMEM;

if(mpnt->vm_flags & VM_DONTCOPY)

continue;

Next we go through the list of VMAs of the parent process and duplicate
them in the child’s address space.

First we check whether the VMA has the VM DONTCOPY flag set which
protects it from being copied. If it has, then we skip this VMA and continue
with the next.

tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

if (!tmp)

goto fail_nomem;

We get a new vm area struct from the slab cache.

5.2. CREATING A PROCESS ADDRESS SPACE 183

*tmp = *mpnt;

tmp->vm_flags &= ~VM_LOCKED;

tmp->vm_mm = mm;

tmp->vm_next = NULL;

We copy the parents vma to the child’s newly allocated vma. Then we reset
the VM LOCKED flag of the child. Initialize its fields vm mm to point to
the child’s address space and vm next with NULL (as it may be the last node
in the list).

file = tmp->vm_file;

if (file) {

struct inode *inode = file->f_dentry->d_inode;

get_file(file);

if (tmp->vm_flags & VM_DENYWRITE)

atomic_dec(&inode->i_writecount);

If the vma we are copying was mapping a file, the file related fields must also
be initialized. After we confirm that we are indeed mapping a file, we get
a reference to its inode. We then call the function get file on the file to
increment its counter of number of mappings.

Simultaneous read-write and read-only support is not available at the
moment. So if the flag VM DENYWRITE is set, its a read-only mapping else
its read-write. The number of readers or writers on the file mapping is kept
track of by the inode’s i writecount field. If its a read-only mapping, its value
is decremented else it is incremented. So by looking at i writecount we can
know whether the mapping is read-only (negative) or read-write (positive).

/* insert tmp into the share list, just after mpnt */

spin_lock(&inode->i_mapping->i_shared_lock);

if((tmp->vm_next_share = mpnt->vm_next_share) != NULL)

mpnt->vm_next_share->vm_pprev_share =

&tmp->vm_next_share;

mpnt->vm_next_share = tmp;

tmp->vm_pprev_share = &mpnt->vm_next_share;

184 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

spin_unlock(&inode->i_mapping->i_shared_lock);

}

/*

* Link in the new vma and copy the page table entries:

* link in first so that swapoff can see swap entries.

*/

spin_lock(&mm->page_table_lock);

*pprev = tmp;

pprev = &tmp->vm_next;

mm->map_count++;

We now add the VMA to the mmap list and also increment the counter.

retval = copy_page_range(mm, current->mm, tmp);

spin_unlock(&mm->page_table_lock);

Next we call copy page range() to copy the page table entries.

if (tmp->vm_ops && tmp->vm_ops->open)

tmp->vm_ops->open(tmp);

if (retval)

goto fail_nomem;

}

If there is an open() function defined for this memory region (to perform any
initializations), we call it.

retval = 0;

build_mmap_rb(mm);

5.3. DELETING A PROCESS ADDRESS SPACE 185

Next we call build mmap rb() which creates a red-black tree with the VMAs
for faster searches.

fail_nomem:

flush_tlb_mm(current->mm);

return retval;

Then we flush the TLB.

5.3 Deleting a Process Address Space

5.3.1 Function exit mm()

File: kernel/exit.c

Prototypes:

void exit_mm(struct task_struct * tsk)

void __exit_mm(struct task_struct * tsk)

This function is called from do exit() whenever a process exits, to delete
its address space.

struct mm_struct * mm = tsk->mm;

mm_release();

The function mm release() is only called to notify the parent about the
death of its child if the child was created via vfork().

if (mm) {

atomic_inc(&mm->mm_count);

BUG_ON(mm != tsk->active_mm);

We check to see if mm is still valid (not yet dropped) and then increment its
mm count to stop it being dropped from under us. Also mm and active mm
needs to be the same.

kernel/exit.c

186 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

/* more a memory barrier than a real lock */

task_lock(tsk);

tsk->mm = NULL;

task_unlock(tsk);

enter_lazy_tlb(mm, current, smp_processor_id());

Since we are about to modify the task structure, we take a lock on it. Then
we remove the mm’s reference from the task structure. After unlocking the
task struct, enter lazy tlb() is called which is a no-op on a uni-processor.

mmput(mm);

}

Finally mmput() is called to actually destroy mm struct.

5.3.2 Function mmput()

File: kernel/fork.c

Prototype:

void mmput(struct mm_struct *mm)

This function is used to de-allocate various resources held by the mm struct

and then drop it.

if (atomic_dec_and_lock(&mm->mm_users, &mmlist_lock)) {

We can drop a mm struct only if the number of users sharing this is 1. So
the above line decrements mm users and if it becomes 0, locks the structure.

extern struct mm_struct *swap_mm;

if (swap_mm == mm)

swap_mm = list_entry(mm->mmlist.next,

struct mm_struct, mmlist);

kernel/fork.c

5.3. DELETING A PROCESS ADDRESS SPACE 187

The global swap mm is used to point to the mm struct that is going to be
swapped out next. Here in the above code we test to see if swap mm is the
same mm we are dropping. If it is, then we update swap mm to point to the
next mm on the mm list.

list_del(&mm->mmlist);

mmlist_nr--;

spin_unlock(&mmlist_lock);

Next we remove the mm struct from the global mm list, decrement the mm-
list nr counter and unlock the spinlock on mm list which was locked previ-
ously in the call to atomic dec and lock().

exit_mmap(mm);

We call exit mmap() to do the actual release of all the memory.

mmdrop(mm);

}

Lastly mmdrop is called to release the mm struct to the slab allocator.

5.3.3 Function exit mmap()

File: mm/mmap.c

Prototype:

void exit_mmap(struct mm_struct * mm)

This function does all the grunt work of releasing all the resources from the
given mm struct.

struct vm_area_struct * mpnt;

release_segments(mm);

mm/mmap.c

188 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

If this address space has an associated LDT, it is freed.

spin_lock(&mm->page_table_lock);

mpnt = mm->mmap;

mm->mmap = mm->mmap_cache = NULL;

mm->mm_rb = RB_ROOT;

mm->rss = 0;

spin_unlock(&mm->page_table_lock);

mm->total_vm = 0;

mm->locked_vm = 0;

Next we reset most of the variables (probably because it will be re-used by
the slab allocator).

flush_cache_mm(mm);

The above function is called to flush the caches (L1 and L2). This function
on an i386 is a no-op.

while (mpnt) {

struct vm_area_struct * next = mpnt->vm_next;

unsigned long start = mpnt->vm_start;

unsigned long end = mpnt->vm_end;

unsigned long size = end - start;

Then we start going through each of the VMAs.

if (mpnt->vm_ops) {

if (mpnt->vm_ops->close)

mpnt->vm_ops->close(mpnt);

}

5.3. DELETING A PROCESS ADDRESS SPACE 189

If there is a vm ops defined, then call the close operation on the memory
region.

mm->map_count--;

remove_shared_vm_struct(mpnt);

zap_page_range(mm, start, size);

We decrement the number of VMAs counter, map count and remove the
VMA from the list of shared mappings if it is mapping a file. Then the call
to zap page range() will remove all the page table entries covered by this
VMA.

if (mpnt->vm_file)

fput(mpnt->vm_file);

kmem_cache_free(vm_area_cachep, mpnt);

mpnt = next;

}

If we were mapping a file, then fput() is called to decrement the number of
users count of the file and if it becomes 0, then drop the file structure. Then
we release the VMA to the slab allocator and continue with the rest of the
VMAs.

flush_tlb_mm(mm);

Then we flush the TLB cache.

/* This is just debugging */

if (mm->map_count)

BUG();

clear_page_tables(mm, FIRST_USER_PGD_NR, USER_PTRS_PER_PGD);

Lastly, all the page directory and page midle directory entries are cleared.

190 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

5.4 Allocating a Memory Region

5.4.1 Function do mmap()

File: include/linux/mm.h

Prototype:

unsigned long do_mmap(struct file *file,

unsigned long addr,

unsigned long len,

unsigned long prot,

unsigned long flag,

unsigned long offset)

This function is used to create a new memory region for a process. Its
parameters are:

file
File descriptor of the file being mapped.

addr
Preferred address where this mapping should start from.

len
Size of the mapping.

prot
Protection flags of the pages in this region (defined in include/

asm-i386/mman.h).

PROT READ
Pages can be read.

PROT WRITE
Pages can be written.

PROT EXEC
Pages can be executed.

PROT NONE
Pages can not be accessed.

flag
Used to specify the type of the mapping. The various flags are (defined
in include/asm-i386/mman.h):

include/linux/mm.h
include/asm-i386/mman.h
include/asm-i386/mman.h
include/asm-i386/mman.h

5.4. ALLOCATING A MEMORY REGION 191

MAP FIXED
Do not select a different address than the one specified. If the
specified address cannot be used, mmap will fail. If MAP FIXED
is specified, start must be a multiple of the pagesize.

MAP SHARED
Share this mapping with all other processes that map this object.
Storing to the region is equivalent to writing to the file.

MAP PRIVATE
Create a private copy-on-write mapping. Stores to the region do
not affect the original file.

MAP DENYWRITE
This region maps a file read-only.

MAP NORESERVE
If set, we don’t check if there is enough memory for the allocation
(overcommit).

MAP ANONYMOUS
No file is associated with this memory region.

MAP GROWSDOWN
This mapping can expand towards lower addresses (eg. stack).

MAP EXECUTABLE
Mapping contains executable code.

MAP LOCKED
Pages in this mapping are locked and cannot be swapped out.

offset
Offset within the file the mapping is going to start.

unsigned long ret = -EINVAL;

if ((offset + PAGE_ALIGN(len)) < offset)

goto out;

We check for an overflow.

if (!(offset & ~PAGE_MASK))

ret = do_mmap_pgoff(file, addr, len, prot,

192 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

flag, offset >> PAGE_SHIFT);

out:

return ret;

After checking that the offset is page aligned, we call do mmap pgoff() to do
the real work of allocating the VMA.

5.4.2 Function do mmap pgoff()

File: mm/mmap.c

Prototype:

unsigned long do_mmap_pgoff(struct file * file,

unsigned long addr,

unsigned long len,

unsigned long prot,

unsigned long flags,

unsigned long pgoff)

This function does the actual work of creating a VMA.

struct mm_struct * mm = current->mm;

struct vm_area_struct * vma, * prev;

unsigned int vm_flags;

int correct_wcount = 0;

int error;

rb_node_t ** rb_link, * rb_parent;

if (file && (!file->f_op || !file->f_op->mmap))

return -ENODEV;

If we are trying to map a file, file, file → f op and file → f op → mmap
should not be NULL.

if ((len = PAGE_ALIGN(len)) == 0)

return addr;

if (len > TASK_SIZE)

mm/mmap.c

5.4. ALLOCATING A MEMORY REGION 193

return -EINVAL;

If the size of the request is 0 or if it exceeds the maximum limit of the process
which is 3GB, it just returns with the appropriate error value.

/* offset overflow? */

if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)

return -EINVAL;

/* Too many mappings? */

if (mm->map_count > max_map_count)

return -ENOMEM;

We check for an overflow and also see if we have not reached the limit of
number of VMAs a process can have. The limit is currently 65536.

/* Obtain the address to map to. we verify

* (or select) it and ensure that it represents

* a valid section of the address space.

*/

addr = get_unmapped_area(file, addr, len, pgoff, flags);

if (addr & ~PAGE_MASK)

return addr;

The function get unmapped area() returns the starting address of an unused
address space big enough to hold the new memory region.

/* Do simple checking here so the lower-level

* routines won’t have to. we assume access

* permissions have been handled by the open

* of the memory object, so we don’t do any here.

*/

vm_flags = calc_vm_flags(prot,flags) | mm->def_flags |

VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;

194 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

Then we get the new flags for the memory region by combining the prot and
flags fields.

/* mlock MCL_FUTURE? */

if (vm_flags & VM_LOCKED) {

unsigned long locked = mm->locked_vm << PAGE_SHIFT;

locked += len;

if (locked > current->rlim[RLIMIT_MEMLOCK].rlim_cur)

return -EAGAIN;

}

If one of the flags happens to be VM LOCKED, then we check whether we
are within the limit on the number of locked pages. As previously mentioned,
mm → locked vm gives the number of pages already locked. So the above
expression first converts it into the number of bytes and then adds it to len,
thereby giving the total number of pages that are going to be locked. By
default, the limit is infinity.

if (file) {

switch (flags & MAP_TYPE) {

case MAP_SHARED:

if ((prot & PROT_WRITE) && !(file->f_mode & FMODE_WRITE))

return -EACCES;

/* Make sure we don’t allow writing to an append-only file.. */

if (IS_APPEND(file->f_dentry->d_inode)

&& (file->f_mode & FMODE_WRITE))

return -EACCES;

/* make sure there are no mandatory locks on the file. */

if (locks_verify_locked(file->f_dentry->d_inode))

return -EAGAIN;

vm_flags |= VM_SHARED | VM_MAYSHARE;

if (!(file->f_mode & FMODE_WRITE))

5.4. ALLOCATING A MEMORY REGION 195

vm_flags &= ~(VM_MAYWRITE | VM_SHARED);

If we are mapping a file and its a shared mapping, then we check for the
following conditions:

1. If the pages in the mapping can be written to, but the file was opened
in read-only mode, return with an access error.

2. The comment says it all. We cannot write to a file that is opened in
O APPEND mode.

3. If there is a lock on the file, then return and let the user try again later.

4. Set the flags VM SHARED and VM MAYSHARE. Then if the file is
read-only, the flags VM MAYWRITE and VM SHARED are reset.

/* fall through */

case MAP_PRIVATE:

if (!(file->f_mode & FMODE_READ))

return -EACCES;

break;

default:

return -EINVAL;

}

We cannot map a file privately which is not opened in read-only mode. So
we just return an ”Access Denied”. The default action is to return the error
”Invalid Value”.

} else {

vm_flags |= VM_SHARED | VM_MAYSHARE;

switch (flags & MAP_TYPE) {

default:

return -EINVAL;

case MAP_PRIVATE:

vm_flags &= ~(VM_SHARED | VM_MAYSHARE);

196 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

/* fall through */

case MAP_SHARED:

break;

}

}

If we are not mapping a file, set the flags VM SHARED and
VM MAYSHARE. Then if its a private mapping, we reset the flags which
were set above else if it is a shared mapping, we do nothing as the correct
flags were already set.

/* Clear old maps */

munmap_back:

vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);

if (vma && vma->vm_start < addr + len) {

if (do_munmap(mm, addr, len))

return -ENOMEM;

goto munmap_back;

}

The function find vma prepare() will return a VMA the given address lies
in. If the address does not lie in any VMA, then it sets the value of vma
to NULL. It also modifies the values of rb link and rb parent to point to
the parent and link of the new VMA. So the above code checks if the given
address lies in any VMA, if it does, it de-allocates that VMA to re-create it
later with a bigger size.

/* Check against address space limit. */

if ((mm->total_vm << PAGE_SHIFT) + len

> current->rlim[RLIMIT_AS].rlim_cur)

return -ENOMEM;

As already mentioned, total vm gives the number of pages already allocated
to this process. So we convert it into number of bytes , add the size of the
new request and compare it with the address space limit.

5.4. ALLOCATING A MEMORY REGION 197

/* Private writable mapping? Check memory availability.. */

if ((vm_flags & (VM_SHARED | VM_WRITE)) == VM_WRITE &&

!(flags & MAP_NORESERVE) &&

!vm_enough_memory(len >> PAGE_SHIFT))

return -ENOMEM;

If all the three conditions are true, quit.

/* Can we just expand an old anonymous mapping? */

if (!file && !(vm_flags & VM_SHARED) && rb_parent)

if (vma_merge(mm, prev, rb_parent, addr, addr + len, vm_flags))

goto out;

If we are not mapping a file and its not a shared mapping and the parent
node is not NULL, then we call vma merge() to try to increase the size of
parent node (VMA) to include this range of addresses also. If its successfull,
we avoid creating a new VMA and jump to the end.

/* Determine the object being mapped and call the appropriate

* specific mapper. the address has already been validated, but

* not unmapped, but the maps are removed from the list.

*/

vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

if (!vma)

return -ENOMEM;

Get a new vm area struct from the slab allocator.

vma->vm_mm = mm;

vma->vm_start = addr;

vma->vm_end = addr + len;

vma->vm_flags = vm_flags;

vma->vm_page_prot = protection_map[vm_flags & 0x0f];

198 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

vma->vm_ops = NULL;

vma->vm_pgoff = pgoff;

vma->vm_file = NULL;

vma->vm_private_data = NULL;

vma->vm_raend = 0;

Initialize its members.

if (file) {

error = -EINVAL;

if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))

goto free_vma;

If we are mapping a file, it cannot grow, so we release the new VMA and
quit.

if (vm_flags & VM_DENYWRITE) {

error = deny_write_access(file);

if (error)

goto free_vma;

correct_wcount = 1;

}

If the VM DENYWRITE flag is set (ie. specifying a read-only region), we
call deny write access() to decrement the file → fdentry → dinode →
iwritecount counter. It returns 0 if successful else -ETXTBSY if file was
already mapped read-write.

vma->vm_file = file;

get_file(file);

error = file->f_op->mmap(file, vma);

if (error)

goto unmap_and_free_vma;

Then we assign the file to the VMA and call get file() to increment the file
counter f count, which is used to keep track of the number of users mapping

5.4. ALLOCATING A MEMORY REGION 199

this file. Finally the mmap() function of the file is called to do the actuall
mapping.

} else if (flags & MAP_SHARED) {

error = shmem_zero_setup(vma);

if (error)

goto free_vma;

}

If we are not mapping a file and MAP SHARED flag is set, then its a shared
anonymous mapping. We call shmem zero setup() to create an anonymous
file in memory (shmfs) and assign it to this VMA’s vm file field.

/* Can addr have changed??

*

* Answer: Yes, several device drivers can do it in their

* f_op->mmap method. -DaveM

*/

if (addr != vma->vm_start) {

/*

* It is a bit too late to pretend changing the virtual

* area of the mapping, we just corrupted userspace

* in the do_munmap, so FIXME (not in 2.4 to avoid breaking

* the driver API).

*/

struct vm_area_struct * stale_vma;

/* Since addr changed, we rely on the mmap op to prevent

* collisions with existing vmas and just use find_vma_prepare

* to update the tree pointers.

*/

addr = vma->vm_start;

stale_vma = find_vma_prepare(mm, addr, &prev,

&rb_link, &rb_parent);

/*

* Make sure the lowlevel driver did its job right.

*/

200 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

if (unlikely(stale_vma && stale_vma->vm_start

< vma->vm_end)) {

printk(KERN_ERR "buggy mmap operation: [<%p>]\n",

file ? file->f_op->mmap : NULL);

BUG();

}

}

vma_link(mm, vma, prev, rb_link, rb_parent);

if (correct_wcount)

atomic_inc(&file->f_dentry->d_inode->i_writecount);

Since the VMA is now ready, it is added to the rbtree.

out:

mm->total_vm += len >> PAGE_SHIFT;

if (vm_flags & VM_LOCKED) {

mm->locked_vm += len >> PAGE_SHIFT;

make_pages_present(addr, addr + len);

}

return addr;

unmap_and_free_vma:

if (correct_wcount)

atomic_inc(&file->f_dentry->d_inode->i_writecount);

vma->vm_file = NULL;

fput(file);

/* Undo any partial mapping done by a device driver. */

zap_page_range(mm, vma->vm_start, vma->vm_end - vma->vm_start);

xxx

5.4. ALLOCATING A MEMORY REGION 201

free_vma:

kmem_cache_free(vm_area_cachep, vma);

return error;

5.4.3 Function get unmapped area()

File: mm/mmap.c

Prototype:

unsigned long

get_unmapped_area(struct file *file,

unsigned long addr,

unsigned long len,

unsigned long pgoff,

unsigned long flags)

This function is used to find a suitable address space for the mapping.

if (flags & MAP_FIXED) {

if (addr > TASK_SIZE - len)

return -ENOMEM;

if (addr & ~PAGE_MASK)

return -EINVAL;

return addr;

}

If the MAP FIXED flag is set, ie. the mapping has to start at the given
address only, the following checks are made:

1. The start address + length of the mapping is not overflowing the pro-
cess address space limit of TASK SIZE (3GB).

2. The address must start on a page boundary.

If both conditions are met, the address is returned as is with no further
checks.

if (file && file->f_op && file->f_op->get_unmapped_area)

return file->f_op->get_unmapped_area(file, addr,

len, pgoff, flags);

mm/mmap.c

202 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

If we were mapping a file and the corresponding file operation functions are
defined, we call its get unmapped area() operation.

return arch_get_unmapped_area(file,addr,len,pgoff,flags);

5.4.4 Function arch get unmapped area()

File: mm/mmap.c

Prototype:

unsigned long

arch_get_unmapped_area(struct file *filp,

unsigned long addr,

unsigned long len,

unsigned long pgoff,

unsigned long flags)

This function is used to find a free address space which can hold
the anonymous mapping of the given size. This function is a generic
function and can be replaced by architecture specific code by defining
HAVE ARCH UNMAPPED AREA and using the same prototype for its im-
plementation. This is done in alpha, ia64 and sparc architectures.

struct vm_area_struct *vma;

if (len > TASK_SIZE)

return -ENOMEM;

Check to see if the size is not greater than the available address space.

if (addr) {

addr = PAGE_ALIGN(addr);

vma = find_vma(current->mm, addr);

if (TASK_SIZE - len >= addr &&

(!vma || addr + len <= vma->vm_start))

return addr;

mm/mmap.c

5.4. ALLOCATING A MEMORY REGION 203

}

If addr is non-zero, we align it to a page boundary. We call the function
find vma() to see if the given address is contained in an existing VMA. If
it is not contained in any VMA and the end of the mapping is within the
process address space, we return the address.

addr = PAGE_ALIGN(TASK_UNMAPPED_BASE);

No preferred address has been specified, so we start the search from the
default start address of TASK UNMAPPED BASE (1GB).

for (vma = find_vma(current->mm, addr); ; vma = vma->vm_next) {

if (TASK_SIZE - len < addr)

return -ENOMEM;

if (!vma || addr + len <= vma->vm_start)

return addr;

addr = vma->vm_end;

}

We repeat the exercise of finding whether the address is contained in any
existing VMA or not. If it is not contained in any of them and the mapping
will not overflow the process address space, we return the address else we
continue the search. The loop exits when we find a suitable address or we
run out of address space.

5.4.5 Function find vma prepare()

File: mm/mmap.c

Prototype:

struct vm_area_struct *

find_vma_prepare(struct mm_struct * mm,

unsigned long addr,

struct vm_area_struct ** pprev,

rb_node_t *** rb_link,

mm/mmap.c

204 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

rb_node_t ** rb_parent)

struct vm_area_struct * vma;

rb_node_t ** __rb_link, * __rb_parent, * rb_prev;

__rb_link = &mm->mm_rb.rb_node;

rb_prev = __rb_parent = NULL;

vma = NULL;

while (*__rb_link) {

struct vm_area_struct *vma_tmp;

__rb_parent = *__rb_link;

vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);

if (vma_tmp->vm_end > addr) {

vma = vma_tmp;

if (vma_tmp->vm_start <= addr)

return vma;

__rb_link = &__rb_parent->rb_left;

} else {

rb_prev = __rb_parent;

__rb_link = &__rb_parent->rb_right;

}

}

*pprev = NULL;

if (rb_prev)

*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);

*rb_link = __rb_link;

*rb_parent = __rb_parent;

return vma;

5.4.6 Function vm enough memory()

File: mm/mmap.c

Prototype:

int vm_enough_memory(long pages)

mm/mmap.c

5.4. ALLOCATING A MEMORY REGION 205

This function is used to check that a process has enough memory to allocate
a new virtual mapping.

unsigned long free;

/* Sometimes we want to use more memory than we have. */

if (sysctl_overcommit_memory)

return 1;

The variable sysctl overcommit memory can be set through the
/proc/sys/vm/overcommit memory interface. This value contains a flag that
enables memory overcommitment. When this flag is 0, the kernel checks be-
fore each malloc() to see if there’s enough memory left. If the flag is nonzero,
the system pretends there’s always enough memory.

/* The page cache contains buffer pages these days.. */

free = atomic_read(&page_cache_size);

free += nr_free_pages();

free += nr_swap_pages;

We start calculating the amount of free allocatable memory present in the
system. The variable page cache size is the number of pages in the page
cache hash table. The function nr free pages() returns the total number
of free pages in all the three zones. The variable nr swap pages gives the
number of pages that can be accomodated in the swap.

/*

* This double-counts: the nrpages are both in the page-cache

* and in the swapper space. At the same time, this

* compensates for the swap-space over-allocation (ie

* "nr_swap_pages" being too small.

*/

free += swapper_space.nrpages;

Adding the number of pages being used by the swap cache.

206 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

/*

* The code below doesn’t account for free space in the inode

* and dentry slab cache, slab cache fragmentation, inodes and

* dentries which will become freeable under VM load, etc.

* Lets just hope all these (complex) factors balance out...

*/

free += (dentry_stat.nr_unused * sizeof(struct dentry))

>> PAGE_SHIFT;

free += (inodes_stat.nr_unused * sizeof(struct inode))

>> PAGE_SHIFT;

return free > pages;

Add the number of pages taken up by the dentry and inode slab caches.
Returns 1 if the number of pages available is greater than the number of
pages requested, else it returns 0.

5.5 De-Allocating a Memory Region

5.5.1 Function sys munmap()

File: mm/mmap.c

Prototype:

long sys_munmap(unsigned long addr,

size_t len)

This function is used to remove an existing mapping from the process address
space.

int ret;

struct mm_struct *mm = current->mm;

down_write(&mm->mmap_sem);

ret = do_munmap(mm, addr, len);

up_write(&mm->mmap_sem);

return ret;

mm/mmap.c

5.5. DE-ALLOCATING A MEMORY REGION 207

We lock the mm struct and call do munmap() which does the actual work of
releasing the pages etc.

5.5.2 Function do munmap()

File: mm/mmap.c

Prototype:

int do_munmap(struct mm_struct *mm,

unsigned long addr,

size_t len)

This function is responsible for deleting a memory region.

struct vm_area_struct *mpnt, *prev, **npp, *free, *extra;

if ((addr & ~PAGE_MASK) || addr > TASK_SIZE || len > TASK_SIZE-addr)

return -EINVAL;

if ((len = PAGE_ALIGN(len)) == 0)

return -EINVAL;

/* Check if this memory area is ok - put it on the temporary

* list if so.. The checks here are pretty simple --

* every area affected in some way (by any overlap) is put

* on the list. If nothing is put on, nothing is affected.

*/

mpnt = find_vma_prev(mm, addr, &prev);

if (!mpnt)

return 0;

/* we have addr < mpnt->vm_end */

if (mpnt->vm_start >= addr+len)

return 0;

mm/mmap.c

208 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

/* If we’ll make "hole", check the vm areas limit */

if ((mpnt->vm_start < addr && mpnt->vm_end > addr+len)

&& mm->map_count >= max_map_count)

return -ENOMEM;

/*

* We may need one additional vma to fix up the mappings ...

* and this is the last chance for an easy error exit.

*/

extra = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

if (!extra)

return -ENOMEM;

npp = (prev ? &prev->vm_next : &mm->mmap);

free = NULL;

spin_lock(&mm->page_table_lock);

for (; mpnt && mpnt->vm_start < addr+len; mpnt = *npp) {

*npp = mpnt->vm_next;

mpnt->vm_next = free;

free = mpnt;

rb_erase(&mpnt->vm_rb, &mm->mm_rb);

}

mm->mmap_cache = NULL; /* Kill the cache. */

spin_unlock(&mm->page_table_lock);

/* Ok - we have the memory areas we should free on the ’free’ list,

* so release them, and unmap the page range..

* If the one of the segments is only being partially unmapped,

* it will put new vm_area_struct(s) into the address space.

* In that case we have to be careful with VM_DENYWRITE.

*/

5.5. DE-ALLOCATING A MEMORY REGION 209

while ((mpnt = free) != NULL) {

unsigned long st, end, size;

struct file *file = NULL;

free = free->vm_next;

st = addr < mpnt->vm_start ? mpnt->vm_start : addr;

end = addr+len;

end = end > mpnt->vm_end ? mpnt->vm_end : end;

size = end - st;

if (mpnt->vm_flags & VM_DENYWRITE &&

(st != mpnt->vm_start || end != mpnt->vm_end) &&

(file = mpnt->vm_file) != NULL) {

atomic_dec(&file->f_dentry->d_inode->i_writecount);

}

remove_shared_vm_struct(mpnt);

mm->map_count--;

zap_page_range(mm, st, size);

/*

* Fix the mapping, and free the old area if it wasn’t reused.

*/

extra = unmap_fixup(mm, mpnt, st, size, extra);

if (file)

atomic_inc(&file->f_dentry->d_inode->i_writecount);

}

validate_mm(mm);

/* Release the extra vma struct if it wasn’t used */

if (extra)

kmem_cache_free(vm_area_cachep, extra);

free_pgtables(mm, prev, addr, addr+len);

return 0;

210 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

5.6 Modifying Heap

5.6.1 Function sys brk()

File: mm/mmap.c

Prototype:

unsigned long sys_brk(unsigned long brk)

This is a system call which is used to manipulate the size of the heap of a
process. The parameter brk specifies the new value of the end address of the
data section. current → mm → brk.

unsigned long rlim, retval;

unsigned long newbrk, oldbrk;

struct mm_struct *mm = current->mm;

down_write(&mm->mmap_sem);

Since we are about to access/modify the structure representing the current
process address space, we need to lock it by using the semaphore mmap sem.

if (brk < mm->end_code)

goto out;

The data section comes after the code section. The above check is used to
see if the new value is invalid.

newbrk = PAGE_ALIGN(brk);

oldbrk = PAGE_ALIGN(mm->brk);

if (oldbrk == newbrk)

goto set_brk;

If the new value of brk is the same as the old value, we just jump over all
the checks and

mm/mmap.c

5.6. MODIFYING HEAP 211

/* Always allow shrinking brk. */

if (brk <= mm->brk) {

if (!do_munmap(mm, newbrk, oldbrk-newbrk))

goto set_brk;

goto out;

}

xxxx

/* Check against rlimit.. */

rlim = current->rlim[RLIMIT_DATA].rlim_cur;

if (rlim < RLIM_INFINITY && brk - mm->start_data > rlim)

goto out;

xxxx

/* Check against existing mmap mappings. */

if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))

goto out;

xxxx

/* Check if we have enough memory.. */

if (!vm_enough_memory((newbrk-oldbrk) >> PAGE_SHIFT))

goto out;

xxxx

212 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

/* Ok, looks good - let it rip. */

if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)

goto out;

xxxx

set_brk:

mm->brk = brk;

out:

retval = mm->brk;

up_write(&mm->mmap_sem);

return retval;

5.6.2 Function do brk()

File: mm/mmap.c

Prototype:

unsigned long do_brk(unsigned long addr,

unsigned long len)

struct mm_struct * mm = current->mm;

struct vm_area_struct * vma, * prev;

unsigned long flags;

rb_node_t ** rb_link, * rb_parent;

len = PAGE_ALIGN(len);

if (!len)

return addr;

/*

* mlock MCL_FUTURE?

*/

if (mm->def_flags & VM_LOCKED) {

unsigned long locked = mm->locked_vm << PAGE_SHIFT;

locked += len;

mm/mmap.c

5.6. MODIFYING HEAP 213

if (locked > current->rlim[RLIMIT_MEMLOCK].rlim_cur)

return -EAGAIN;

}

/*

* Clear old maps. this also does some error checking for us

*/

munmap_back:

vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);

if (vma && vma->vm_start < addr + len) {

if (do_munmap(mm, addr, len))

return -ENOMEM;

goto munmap_back;

}

/* Check against address space limits *after* clearing old maps... */

if ((mm->total_vm << PAGE_SHIFT) + len

> current->rlim[RLIMIT_AS].rlim_cur)

return -ENOMEM;

if (mm->map_count > max_map_count)

return -ENOMEM;

if (!vm_enough_memory(len >> PAGE_SHIFT))

return -ENOMEM;

flags = VM_DATA_DEFAULT_FLAGS | mm->def_flags;

/* Can we just expand an old anonymous mapping? */

if (rb_parent && vma_merge(mm, prev,

rb_parent, addr, addr + len, flags))

goto out;

/*

* create a vma struct for an anonymous mapping

*/

vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

if (!vma)

return -ENOMEM;

vma->vm_mm = mm;

214 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

vma->vm_start = addr;

vma->vm_end = addr + len;

vma->vm_flags = flags;

vma->vm_page_prot = protection_map[flags & 0x0f];

vma->vm_ops = NULL;

vma->vm_pgoff = 0;

vma->vm_file = NULL;

vma->vm_private_data = NULL;

vma_link(mm, vma, prev, rb_link, rb_parent);

out:

mm->total_vm += len >> PAGE_SHIFT;

if (flags & VM_LOCKED) {

mm->locked_vm += len >> PAGE_SHIFT;

make_pages_present(addr, addr + len);

}

return addr;

5.7 Unclassified

5.7.1 Function remove shared vm struct()

File: mm/mmap.c

Prototype:

void __remove_shared_vm_struct(struct vm_area_struct *vma)

struct file * file = vma->vm_file;

if (file) {

struct inode *inode = file->f_dentry->d_inode;

if (vma->vm_flags & VM_DENYWRITE)

atomic_inc(&inode->i_writecount);

if(vma->vm_next_share)

vma->vm_next_share->vm_pprev_share = vma->vm_pprev_share;

*vma->vm_pprev_share = vma->vm_next_share;

}

mm/mmap.c

5.7. UNCLASSIFIED 215

5.7.2 Function remove shared vm struct()

File: mm/mmap.c

Prototype:

void remove_shared_vm_struct(struct vm_area_struct *vma)

lock_vma_mappings(vma);

__remove_shared_vm_struct(vma);

unlock_vma_mappings(vma);

5.7.3 Function lock vma mappings()

File: mm/mmap.c

Prototype:

void lock_vma_mappings(struct vm_area_struct *vma)

struct address_space *mapping;

mapping = NULL;

if (vma->vm_file)

mapping = vma->vm_file->f_dentry->d_inode->i_mapping;

if (mapping)

spin_lock(&mapping->i_shared_lock);

5.7.4 Function unlock vma mappings()

File: mm/mmap.c

Prototype:

void unlock_vma_mappings(struct vm_area_struct *vma)

struct address_space *mapping;

mapping = NULL;

if (vma->vm_file)

mapping = vma->vm_file->f_dentry->d_inode->i_mapping;

mm/mmap.c
mm/mmap.c
mm/mmap.c

216 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

if (mapping)

spin_unlock(&mapping->i_shared_lock);

5.7.5 Function calc vm flags()

File: mm/mmap.c

Prototype:

unsigned long calc_vm_flags(unsigned long prot,

unsigned long flags)

#define _trans(x,bit1,bit2) \

((bit1==bit2)?(x&bit1):(x&bit1)?bit2:0)

unsigned long prot_bits, flag_bits;

prot_bits =

_trans(prot, PROT_READ, VM_READ) |

_trans(prot, PROT_WRITE, VM_WRITE) |

_trans(prot, PROT_EXEC, VM_EXEC);

flag_bits =

_trans(flags, MAP_GROWSDOWN, VM_GROWSDOWN) |

_trans(flags, MAP_DENYWRITE, VM_DENYWRITE) |

_trans(flags, MAP_EXECUTABLE, VM_EXECUTABLE);

return prot_bits | flag_bits;

#undef _trans

5.7.6 Function vma link list()

File: mm/mmap.c

Prototype:

void __vma_link_list(struct mm_struct * mm,

struct vm_area_struct * vma,

struct vm_area_struct * prev,

rb_node_t * rb_parent)

if (prev) {

vma->vm_next = prev->vm_next;

mm/mmap.c
mm/mmap.c

5.7. UNCLASSIFIED 217

prev->vm_next = vma;

} else {

mm->mmap = vma;

if (rb_parent)

vma->vm_next = rb_entry(rb_parent,

struct vm_area_struct, vm_rb);

else

vma->vm_next = NULL;

}

5.7.7 Function vma link rb()

File: mm/mmap.c

Prototype:

void __vma_link_rb(struct mm_struct * mm,

struct vm_area_struct * vma,

rb_node_t ** rb_link,

rb_node_t * rb_parent)

rb_link_node(&vma->vm_rb, rb_parent, rb_link);

rb_insert_color(&vma->vm_rb, &mm->mm_rb);

5.7.8 Function vma link file()

File: mm/mmap.c

Prototype:

void __vma_link_file(struct vm_area_struct * vma)

struct file * file;

file = vma->vm_file;

if (file) {

struct inode * inode = file->f_dentry->d_inode;

struct address_space *mapping = inode->i_mapping;

struct vm_area_struct **head;

mm/mmap.c
mm/mmap.c

218 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

if (vma->vm_flags & VM_DENYWRITE)

atomic_dec(&inode->i_writecount);

head = &mapping->i_mmap;

if (vma->vm_flags & VM_SHARED)

head = &mapping->i_mmap_shared;

/* insert vma into inode’s share list */

if((vma->vm_next_share = *head) != NULL)

(*head)->vm_pprev_share = &vma->vm_next_share;

*head = vma;

vma->vm_pprev_share = head;

}

5.7.9 Function vma link()

File: mm/mmap.c

Prototype:

void __vma_link(struct mm_struct * mm,

struct vm_area_struct * vma,

struct vm_area_struct * prev,

rb_node_t ** rb_link,

rb_node_t * rb_parent)

__vma_link_list(mm, vma, prev, rb_parent);

__vma_link_rb(mm, vma, rb_link, rb_parent);

__vma_link_file(vma);

5.7.10 Function vma link()

File: mm/mmap.c

Prototype:

void vma_link(struct mm_struct * mm,

struct vm_area_struct * vma,

struct vm_area_struct * prev,

rb_node_t ** rb_link,

rb_node_t * rb_parent)

mm/mmap.c
mm/mmap.c

5.7. UNCLASSIFIED 219

lock_vma_mappings(vma);

spin_lock(&mm->page_table_lock);

__vma_link(mm, vma, prev, rb_link, rb_parent);

spin_unlock(&mm->page_table_lock);

unlock_vma_mappings(vma);

mm->map_count++;

validate_mm(mm);

5.7.11 Function vma merge()

File: mm/mmap.c

Prototype:

int vma_merge(struct mm_struct * mm,

struct vm_area_struct * prev,

rb_node_t * rb_parent,

unsigned long addr,

unsigned long end,

unsigned long vm_flags)

spinlock_t * lock = &mm->page_table_lock;

if (!prev) {

prev = rb_entry(rb_parent, struct vm_area_struct, vm_rb);

goto merge_next;

}

if (prev->vm_end == addr && can_vma_merge(prev, vm_flags)) {

struct vm_area_struct * next;

spin_lock(lock);

prev->vm_end = end;

next = prev->vm_next;

if (next && prev->vm_end == next->vm_start

&& can_vma_merge(next, vm_flags)) {

prev->vm_end = next->vm_end;

__vma_unlink(mm, next, prev);

spin_unlock(lock);

mm->map_count--;

mm/mmap.c

220 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

kmem_cache_free(vm_area_cachep, next);

return 1;

}

spin_unlock(lock);

return 1;

}

prev = prev->vm_next;

if (prev) {

merge_next:

if (!can_vma_merge(prev, vm_flags))

return 0;

if (end == prev->vm_start) {

spin_lock(lock);

prev->vm_start = addr;

spin_unlock(lock);

return 1;

}

}

return 0;

5.7.12 Function find vma()

File: mm/mmap.c

Prototype:

struct vm_area_struct * find_vma(struct mm_struct * mm,

unsigned long addr)

struct vm_area_struct *vma = NULL;

if (mm) {

/* Check the cache first. */

/* (Cache hit rate is typically around 35%.) */

vma = mm->mmap_cache;

if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {

rb_node_t * rb_node;

mm/mmap.c

5.7. UNCLASSIFIED 221

rb_node = mm->mm_rb.rb_node;

vma = NULL;

while (rb_node) {

struct vm_area_struct * vma_tmp;

vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);

if (vma_tmp->vm_end > addr) {

vma = vma_tmp;

if (vma_tmp->vm_start <= addr)

break;

rb_node = rb_node->rb_left;

} else

rb_node = rb_node->rb_right;

}

if (vma)

mm->mmap_cache = vma;

}

}

return vma;

5.7.13 Function find vma prev()

File: mm/mmap.c

Prototype:

struct vm_area_struct *

find_vma_prev(struct mm_struct * mm,

unsigned long addr,

struct vm_area_struct **pprev)

if (mm) {

/* Go through the RB tree quickly. */

struct vm_area_struct * vma;

rb_node_t * rb_node, * rb_last_right, * rb_prev;

rb_node = mm->mm_rb.rb_node;

rb_last_right = rb_prev = NULL;

mm/mmap.c

222 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

vma = NULL;

while (rb_node) {

struct vm_area_struct * vma_tmp;

vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);

if (vma_tmp->vm_end > addr) {

vma = vma_tmp;

rb_prev = rb_last_right;

if (vma_tmp->vm_start <= addr)

break;

rb_node = rb_node->rb_left;

} else {

rb_last_right = rb_node;

rb_node = rb_node->rb_right;

}

}

if (vma) {

if (vma->vm_rb.rb_left) {

rb_prev = vma->vm_rb.rb_left;

while (rb_prev->rb_right)

rb_prev = rb_prev->rb_right;

}

*pprev = NULL;

if (rb_prev)

*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);

if ((rb_prev ? (*pprev)->vm_next : mm->mmap) != vma)

BUG();

return vma;

}

}

*pprev = NULL;

return NULL;

5.7.14 Function find extend vma()

File: mm/mmap.c

Prototype:

mm/mmap.c

5.7. UNCLASSIFIED 223

struct vm_area_struct *

find_extend_vma(struct mm_struct * mm,

unsigned long addr)

struct vm_area_struct * vma;

unsigned long start;

addr &= PAGE_MASK;

vma = find_vma(mm,addr);

if (!vma)

return NULL;

if (vma->vm_start <= addr)

return vma;

if (!(vma->vm_flags & VM_GROWSDOWN))

return NULL;

start = vma->vm_start;

if (expand_stack(vma, addr))

return NULL;

if (vma->vm_flags & VM_LOCKED) {

make_pages_present(addr, start);

}

return vma;

5.7.15 Function unmap fixup()

File: mm/mmap.c

Prototype:

struct vm_area_struct *

unmap_fixup(struct mm_struct *mm,

struct vm_area_struct *area,

unsigned long addr,

size_t len,

struct vm_area_struct *extra)

struct vm_area_struct *mpnt;

unsigned long end = addr + len;

area->vm_mm->total_vm -= len >> PAGE_SHIFT;

mm/mmap.c

224 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

if (area->vm_flags & VM_LOCKED)

area->vm_mm->locked_vm -= len >> PAGE_SHIFT;

/* Unmapping the whole area. */

if (addr == area->vm_start && end == area->vm_end) {

if (area->vm_ops && area->vm_ops->close)

area->vm_ops->close(area);

if (area->vm_file)

fput(area->vm_file);

kmem_cache_free(vm_area_cachep, area);

return extra;

}

/* Work out to one of the ends. */

if (end == area->vm_end) {

/*

* here area isn’t visible to the semaphore-less readers

* so we don’t need to update it under the spinlock.

*/

area->vm_end = addr;

lock_vma_mappings(area);

spin_lock(&mm->page_table_lock);

} else if (addr == area->vm_start) {

area->vm_pgoff += (end - area->vm_start) >> PAGE_SHIFT;

/* same locking considerations of the above case */

area->vm_start = end;

lock_vma_mappings(area);

spin_lock(&mm->page_table_lock);

} else {

/* Unmapping a hole: area->vm_start < addr <= end < area->vm_end */

/* Add end mapping -- leave beginning for below */

mpnt = extra;

extra = NULL;

mpnt->vm_mm = area->vm_mm;

mpnt->vm_start = end;

mpnt->vm_end = area->vm_end;

mpnt->vm_page_prot = area->vm_page_prot;

mpnt->vm_flags = area->vm_flags;

mpnt->vm_raend = 0;

mpnt->vm_ops = area->vm_ops;

5.7. UNCLASSIFIED 225

mpnt->vm_pgoff = area->vm_pgoff +

((end - area->vm_start) >> PAGE_SHIFT);

mpnt->vm_file = area->vm_file;

mpnt->vm_private_data = area->vm_private_data;

if (mpnt->vm_file)

get_file(mpnt->vm_file);

if (mpnt->vm_ops && mpnt->vm_ops->open)

mpnt->vm_ops->open(mpnt);

area->vm_end = addr; /* Truncate area */

/* Because mpnt->vm_file == area->vm_file this locks

* things correctly.

*/

lock_vma_mappings(area);

spin_lock(&mm->page_table_lock);

__insert_vm_struct(mm, mpnt);

}

__insert_vm_struct(mm, area);

spin_unlock(&mm->page_table_lock);

unlock_vma_mappings(area);

return extra;

5.7.16 Function free pgtables()

File: mm/mmap.c

Prototype:

void free_pgtables(struct mm_struct * mm,

struct vm_area_struct *prev,

unsigned long start,

unsigned long end)

unsigned long first = start & PGDIR_MASK;

unsigned long last = end + PGDIR_SIZE - 1;

unsigned long start_index, end_index;

if (!prev) {

prev = mm->mmap;

mm/mmap.c

226 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

if (!prev)

goto no_mmaps;

if (prev->vm_end > start) {

if (last > prev->vm_start)

last = prev->vm_start;

goto no_mmaps;

}

}

for (;;) {

struct vm_area_struct *next = prev->vm_next;

if (next) {

if (next->vm_start < start) {

prev = next;

continue;

}

if (last > next->vm_start)

last = next->vm_start;

}

if (prev->vm_end > first)

first = prev->vm_end + PGDIR_SIZE - 1;

break;

}

no_mmaps:

/*

* If the PGD bits are not consecutive in the virtual address, the

* old method of shifting the VA >> by PGDIR_SHIFT doesn’t work.

*/

start_index = pgd_index(first);

end_index = pgd_index(last);

if (end_index > start_index) {

clear_page_tables(mm, start_index, end_index - start_index);

flush_tlb_pgtables(mm, first & PGDIR_MASK, last & PGDIR_MASK);

}

5.7.17 Function build mmap rb()

File: mm/mmap.c

Prototype:

mm/mmap.c

5.7. UNCLASSIFIED 227

void build_mmap_rb(struct mm_struct * mm)

struct vm_area_struct * vma;

rb_node_t ** rb_link, * rb_parent;

mm->mm_rb = RB_ROOT;

rb_link = &mm->mm_rb.rb_node;

rb_parent = NULL;

for (vma = mm->mmap; vma; vma = vma->vm_next) {

__vma_link_rb(mm, vma, rb_link, rb_parent);

rb_parent = &vma->vm_rb;

rb_link = &rb_parent->rb_right;

}

5.7.18 Function insert vm struct()

File: mm/mmap.c

Prototype:

void __insert_vm_struct(struct mm_struct * mm,

struct vm_area_struct * vma)

struct vm_area_struct * __vma, * prev;

rb_node_t ** rb_link, * rb_parent;

__vma = find_vma_prepare(mm, vma->vm_start, &prev, &rb_link, &rb_parent);

if (__vma && __vma->vm_start < vma->vm_end)

BUG();

__vma_link(mm, vma, prev, rb_link, rb_parent);

mm->map_count++;

validate_mm(mm);

5.7.19 Function insert vm struct()

File: mm/mmap.c

Prototype:

mm/mmap.c
mm/mmap.c

228 CHAPTER 5. PROCESS VIRTUAL MEMORY MANAGEMENT

void insert_vm_struct(struct mm_struct * mm,

struct vm_area_struct * vma)

struct vm_area_struct * __vma, * prev;

rb_node_t ** rb_link, * rb_parent;

__vma = find_vma_prepare(mm, vma->vm_start, &prev, &rb_link, &rb_parent);

if (__vma && __vma->vm_start < vma->vm_end)

BUG();

vma_link(mm, vma, prev, rb_link, rb_parent);

validate_mm(mm);

Chapter 6

Demand Paging

6.0.1 Function copy cow page()

Prototype:

void copy_cow_page(struct page * from,

struct page * to,

unsigned long address)

if (from == ZERO_PAGE(address)) {

clear_user_highpage(to, address);

return;

}

copy_user_highpage(to, from, address);

6.0.2 Function free pte()

Prototype:

void __free_pte(pte_t pte)

struct page *page = pte_page(pte);

if ((!VALID_PAGE(page)) || PageReserved(page))

return;

if (pte_dirty(pte))

set_page_dirty(page);

free_page_and_swap_cache(page);

229

230 CHAPTER 6. DEMAND PAGING

6.0.3 Function free one pmd()

Prototype:

void free_one_pmd(pmd_t * dir)

pte_t * pte;

if (pmd_none(*dir))

return;

if (pmd_bad(*dir)) {

pmd_ERROR(*dir);

pmd_clear(dir);

return;

}

pte = pte_offset(dir, 0);

pmd_clear(dir);

pte_free(pte);

6.0.4 Function free one pgd()

Prototype:

void free_one_pgd(pgd_t * dir)

int j;

pmd_t * pmd;

if (pgd_none(*dir))

return;

if (pgd_bad(*dir)) {

pgd_ERROR(*dir);

pgd_clear(dir);

return;

}

pmd = pmd_offset(dir, 0);

pgd_clear(dir);

for (j = 0; j < PTRS_PER_PMD ; j++) {

prefetchw(pmd+j+(PREFETCH_STRIDE/16));

free_one_pmd(pmd+j);

}

pmd_free(pmd);

231

6.0.5 Function check pgt cache()

Prototype:

int check_pgt_cache(void)

Returns the number of pages freed.

return do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]);

6.0.6 Function clear page tables()

Prototype:

void clear_page_tables(struct mm_struct *mm,

unsigned long first,

int nr)

This function clears all user-level page tables of a process - this is needed by
execve(), so that old pages aren’t in the way.

pgd_t * page_dir = mm->pgd;

spin_lock(&mm->page_table_lock);

page_dir += first;

do {

free_one_pgd(page_dir);

page_dir++;

} while (--nr);

spin_unlock(&mm->page_table_lock);

/* keep the page table cache within bounds */

check_pgt_cache();

6.0.7 Function copy page range()

Prototype:

int copy_page_range(struct mm_struct *dst,

struct mm_struct *src,

struct vm_area_struct *vma)

232 CHAPTER 6. DEMAND PAGING

pgd_t * src_pgd, * dst_pgd;

unsigned long address = vma->vm_start;

unsigned long end = vma->vm_end;

unsigned long cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;

src_pgd = pgd_offset(src, address)-1;

dst_pgd = pgd_offset(dst, address)-1;

for (;;) {

pmd_t * src_pmd, * dst_pmd;

src_pgd++; dst_pgd++;

/* copy_pmd_range */

if (pgd_none(*src_pgd))

goto skip_copy_pmd_range;

if (pgd_bad(*src_pgd)) {

pgd_ERROR(*src_pgd);

pgd_clear(src_pgd);

skip_copy_pmd_range: address = (address + PGDIR_SIZE) & PGDIR_MASK;

if (!address || (address >= end))

goto out;

continue;

}

src_pmd = pmd_offset(src_pgd, address);

dst_pmd = pmd_alloc(dst, dst_pgd, address);

if (!dst_pmd)

goto nomem;

do {

pte_t * src_pte, * dst_pte;

/* copy_pte_range */

if (pmd_none(*src_pmd))

goto skip_copy_pte_range;

if (pmd_bad(*src_pmd)) {

pmd_ERROR(*src_pmd);

pmd_clear(src_pmd);

233

skip_copy_pte_range: address = (address + PMD_SIZE) & PMD_MASK;

if (address >= end)

goto out;

goto cont_copy_pmd_range;

}

src_pte = pte_offset(src_pmd, address);

dst_pte = pte_alloc(dst, dst_pmd, address);

if (!dst_pte)

goto nomem;

spin_lock(&src->page_table_lock);

do {

pte_t pte = *src_pte;

struct page *ptepage;

/* copy_one_pte */

if (pte_none(pte))

goto cont_copy_pte_range_noset;

if (!pte_present(pte)) {

swap_duplicate(pte_to_swp_entry(pte));

goto cont_copy_pte_range;

}

ptepage = pte_page(pte);

if ((!VALID_PAGE(ptepage)) ||

PageReserved(ptepage))

goto cont_copy_pte_range;

/* If it’s a COW mapping, write protect it both in the parent and the child */

if (cow && pte_write(pte)) {

ptep_set_wrprotect(src_pte);

pte = *src_pte;

}

/* If it’s a shared mapping, mark it clean in the child */

if (vma->vm_flags & VM_SHARED)

pte = pte_mkclean(pte);

pte = pte_mkold(pte);

get_page(ptepage);

dst->rss++;

234 CHAPTER 6. DEMAND PAGING

cont_copy_pte_range: set_pte(dst_pte, pte);

cont_copy_pte_range_noset: address += PAGE_SIZE;

if (address >= end)

goto out_unlock;

src_pte++;

dst_pte++;

} while ((unsigned long)src_pte & PTE_TABLE_MASK);

spin_unlock(&src->page_table_lock);

cont_copy_pmd_range: src_pmd++;

dst_pmd++;

} while ((unsigned long)src_pmd & PMD_TABLE_MASK);

}

out_unlock:

spin_unlock(&src->page_table_lock);

out:

return 0;

nomem:

return -ENOMEM;

6.0.8 Function forget pte()

Prototype:

void forget_pte(pte_t page)

if (!pte_none(page)) {

printk("forget_pte: old mapping existed!\n");

BUG();

}

6.0.9 Function zap pte range()

Prototype:

int zap_pte_range(mmu_gather_t *tlb,

pmd_t * pmd,

unsigned long address,

unsigned long size)

235

unsigned long offset;

pte_t * ptep;

int freed = 0;

if (pmd_none(*pmd))

return 0;

if (pmd_bad(*pmd)) {

pmd_ERROR(*pmd);

pmd_clear(pmd);

return 0;

}

ptep = pte_offset(pmd, address);

offset = address & ~PMD_MASK;

if (offset + size > PMD_SIZE)

size = PMD_SIZE - offset;

size &= PAGE_MASK;

for (offset=0; offset < size; ptep++, offset += PAGE_SIZE) {

pte_t pte = *ptep;

if (pte_none(pte))

continue;

if (pte_present(pte)) {

struct page *page = pte_page(pte);

if (VALID_PAGE(page) && !PageReserved(page))

freed ++;

/* This will eventually call __free_pte on the pte. */

tlb_remove_page(tlb, ptep, address + offset);

} else {

free_swap_and_cache(pte_to_swp_entry(pte));

pte_clear(ptep);

}

}

return freed;

6.0.10 Function zap pmd range()

Prototype:

int zap_pmd_range(mmu_gather_t *tlb,

pgd_t * dir,

unsigned long address,

236 CHAPTER 6. DEMAND PAGING

unsigned long size)

pmd_t * pmd;

unsigned long end;

int freed;

if (pgd_none(*dir))

return 0;

if (pgd_bad(*dir)) {

pgd_ERROR(*dir);

pgd_clear(dir);

return 0;

}

pmd = pmd_offset(dir, address);

end = address + size;

if (end > ((address + PGDIR_SIZE) & PGDIR_MASK))

end = ((address + PGDIR_SIZE) & PGDIR_MASK);

freed = 0;

do {

freed += zap_pte_range(tlb, pmd, address, end - address);

address = (address + PMD_SIZE) & PMD_MASK;

pmd++;

} while (address < end);

return freed;

6.0.11 Function zap page range()

Prototype:

void zap_page_range(struct mm_struct *mm,

unsigned long address,

unsigned long size)

mmu_gather_t *tlb;

pgd_t * dir;

unsigned long start = address, end = address + size;

int freed = 0;

dir = pgd_offset(mm, address);

237

/*

* This is a long-lived spinlock. That’s fine.

* There’s no contention, because the page table

* lock only protects against kswapd anyway, and

* even if kswapd happened to be looking at this

* process we _want_ it to get stuck.

*/

if (address >= end)

BUG();

spin_lock(&mm->page_table_lock);

flush_cache_range(mm, address, end);

tlb = tlb_gather_mmu(mm);

do {

freed += zap_pmd_range(tlb, dir, address, end - address);

address = (address + PGDIR_SIZE) & PGDIR_MASK;

dir++;

} while (address && (address < end));

/* this will flush any remaining tlb entries */

tlb_finish_mmu(tlb, start, end);

/*

* Update rss for the mm_struct (not necessarily current->mm)

* Notice that rss is an unsigned long.

*/

if (mm->rss > freed)

mm->rss -= freed;

else

mm->rss = 0;

spin_unlock(&mm->page_table_lock);

6.0.12 Function follow page()

Prototype:

struct page * follow_page(struct mm_struct *mm,

unsigned long address,

int write)

pgd_t *pgd;

238 CHAPTER 6. DEMAND PAGING

pmd_t *pmd;

pte_t *ptep, pte;

pgd = pgd_offset(mm, address);

if (pgd_none(*pgd) || pgd_bad(*pgd))

goto out;

pmd = pmd_offset(pgd, address);

if (pmd_none(*pmd) || pmd_bad(*pmd))

goto out;

ptep = pte_offset(pmd, address);

if (!ptep)

goto out;

pte = *ptep;

if (pte_present(pte)) {

if (!write ||

(pte_write(pte) && pte_dirty(pte)))

return pte_page(pte);

}

out:

return 0;

6.0.13 Function get page map()

Prototype:

struct page * get_page_map(struct page *page)

if (!VALID_PAGE(page))

return 0;

return page;

6.0.14 Function get user pages()

Prototype:

int get_user_pages(struct task_struct *tsk,

struct mm_struct *mm,

239

unsigned long start,

int len, int write,

int force, struct page **pages,

struct vm_area_struct **vmas)

int i;

unsigned int flags;

/*

* Require read or write permissions.

* If ’force’ is set, we only require the "MAY" flags.

*/

flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);

flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

i = 0;

do {

struct vm_area_struct * vma;

vma = find_extend_vma(mm, start);

if (!vma || (pages && vma->vm_flags & VM_IO) || !(flags & vma->vm_flags))

return i ? : -EFAULT;

spin_lock(&mm->page_table_lock);

do {

struct page *map;

while (!(map = follow_page(mm, start, write))) {

spin_unlock(&mm->page_table_lock);

switch (handle_mm_fault(mm, vma, start, write)) {

case 1:

tsk->min_flt++;

break;

case 2:

tsk->maj_flt++;

break;

case 0:

if (i) return i;

return -EFAULT;

default:

240 CHAPTER 6. DEMAND PAGING

if (i) return i;

return -ENOMEM;

}

spin_lock(&mm->page_table_lock);

}

if (pages) {

pages[i] = get_page_map(map);

/* FIXME: call the correct function,

* depending on the type of the found page

*/

if (!pages[i])

goto bad_page;

page_cache_get(pages[i]);

}

if (vmas)

vmas[i] = vma;

i++;

start += PAGE_SIZE;

len--;

} while(len && start < vma->vm_end);

spin_unlock(&mm->page_table_lock);

} while(len);

out:

return i;

/*

* We found an invalid page in the VMA. Release all we have

* so far and fail.

*/

bad_page:

spin_unlock(&mm->page_table_lock);

while (i--)

page_cache_release(pages[i]);

i = -EFAULT;

goto out;

6.0.15 Function map user kiobuf()

Prototype:

int map_user_kiobuf(int rw,

241

struct kiobuf *iobuf,

unsigned long va,

size_t len)

int pgcount, err;

struct mm_struct * mm;

/* Make sure the iobuf is not already mapped somewhere. */

if (iobuf->nr_pages)

return -EINVAL;

mm = current->mm;

dprintk ("map_user_kiobuf: begin\n");

pgcount = (va + len + PAGE_SIZE - 1)/PAGE_SIZE - va/PAGE_SIZE;

/* mapping 0 bytes is not permitted */

if (!pgcount) BUG();

err = expand_kiobuf(iobuf, pgcount);

if (err)

return err;

iobuf->locked = 0;

iobuf->offset = va & (PAGE_SIZE-1);

iobuf->length = len;

/* Try to fault in all of the necessary pages */

down_read(&mm->mmap_sem);

/* rw==READ means read from disk, write into memory area */

err = get_user_pages(current, mm, va, pgcount,

(rw==READ), 0, iobuf->maplist, NULL);

up_read(&mm->mmap_sem);

if (err < 0) {

unmap_kiobuf(iobuf);

dprintk ("map_user_kiobuf: end %d\n", err);

return err;

}

iobuf->nr_pages = err;

while (pgcount--) {

/* FIXME: flush superflous for rw==READ,

* probably wrong function for rw==WRITE

242 CHAPTER 6. DEMAND PAGING

*/

flush_dcache_page(iobuf->maplist[pgcount]);

}

dprintk ("map_user_kiobuf: end OK\n");

return 0;

6.0.16 Function mark dirty kiobuf()

Prototype:

void mark_dirty_kiobuf(struct kiobuf *iobuf,

int bytes)

int index, offset, remaining;

struct page *page;

index = iobuf->offset >> PAGE_SHIFT;

offset = iobuf->offset & ~PAGE_MASK;

remaining = bytes;

if (remaining > iobuf->length)

remaining = iobuf->length;

while (remaining > 0 && index < iobuf->nr_pages) {

page = iobuf->maplist[index];

if (!PageReserved(page))

SetPageDirty(page);

remaining -= (PAGE_SIZE - offset);

offset = 0;

index++;

}

6.0.17 Function unmap kiobuf()

Prototype:

void unmap_kiobuf (struct kiobuf *iobuf)

243

int i;

struct page *map;

for (i = 0; i < iobuf->nr_pages; i++) {

map = iobuf->maplist[i];

if (map) {

if (iobuf->locked)

UnlockPage(map);

/* FIXME: cache flush missing for rw==READ

* FIXME: call the correct reference counting function

*/

page_cache_release(map);

}

}

iobuf->nr_pages = 0;

iobuf->locked = 0;

6.0.18 Function lock kiovec()

Prototype:

int lock_kiovec(int nr,

struct kiobuf *iovec[],

int wait)

struct kiobuf *iobuf;

int i, j;

struct page *page, **ppage;

int doublepage = 0;

int repeat = 0;

repeat:

for (i = 0; i < nr; i++) {

iobuf = iovec[i];

if (iobuf->locked)

continue;

244 CHAPTER 6. DEMAND PAGING

ppage = iobuf->maplist;

for (j = 0; j < iobuf->nr_pages; ppage++, j++) {

page = *ppage;

if (!page)

continue;

if (TryLockPage(page)) {

while (j--) {

struct page *tmp = *--ppage;

if (tmp)

UnlockPage(tmp);

}

goto retry;

}

}

iobuf->locked = 1;

}

return 0;

retry:

/*

* We couldn’t lock one of the pages. Undo the locking so far,

* wait on the page we got to, and try again.

*/

unlock_kiovec(nr, iovec);

if (!wait)

return -EAGAIN;

/*

* Did the release also unlock the page we got stuck on?

*/

if (!PageLocked(page)) {

/*

* If so, we may well have the page mapped twice

* in the IO address range. Bad news. Of

* course, it _might_ just be a coincidence,

* but if it happens more than once, chances

* are we have a double-mapped page.

245

*/

if (++doublepage >= 3)

return -EINVAL;

/* Try again... */

wait_on_page(page);

}

if (++repeat < 16)

goto repeat;

return -EAGAIN;

6.0.19 Function unlock kiovec()

Prototype:

int unlock_kiovec(int nr,

struct kiobuf *iovec[])

struct kiobuf *iobuf;

int i, j;

struct page *page, **ppage;

for (i = 0; i < nr; i++) {

iobuf = iovec[i];

if (!iobuf->locked)

continue;

iobuf->locked = 0;

ppage = iobuf->maplist;

for (j = 0; j < iobuf->nr_pages; ppage++, j++) {

page = *ppage;

if (!page)

continue;

UnlockPage(page);

}

}

return 0;

246 CHAPTER 6. DEMAND PAGING

6.0.20 Function zeromap pte range()

Prototype:

void zeromap_pte_range(pte_t * pte,

unsigned long address,

unsigned long size,

pgprot_t prot)

unsigned long end;

address &= ~PMD_MASK;

end = address + size;

if (end > PMD_SIZE)

end = PMD_SIZE;

do {

pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot));

pte_t oldpage = ptep_get_and_clear(pte);

set_pte(pte, zero_pte);

forget_pte(oldpage);

address += PAGE_SIZE;

pte++;

} while (address && (address < end));

6.0.21 Function zeromap pmd range()

Prototype:

int zeromap_pmd_range(struct mm_struct *mm,

pmd_t * pmd,

unsigned long address,

unsigned long size,

pgprot_t prot)

unsigned long end;

address &= ~PGDIR_MASK;

end = address + size;

if (end > PGDIR_SIZE)

end = PGDIR_SIZE;

247

do {

pte_t * pte = pte_alloc(mm, pmd, address);

if (!pte)

return -ENOMEM;

zeromap_pte_range(pte, address, end - address, prot);

address = (address + PMD_SIZE) & PMD_MASK;

pmd++;

} while (address && (address < end));

return 0;

6.0.22 Function zeromap page range()

Prototype:

int zeromap_page_range(unsigned long address,

unsigned long size,

pgprot_t prot)

int error = 0;

pgd_t * dir;

unsigned long beg = address;

unsigned long end = address + size;

struct mm_struct *mm = current->mm;

dir = pgd_offset(mm, address);

flush_cache_range(mm, beg, end);

if (address >= end)

BUG();

spin_lock(&mm->page_table_lock);

do {

pmd_t *pmd = pmd_alloc(mm, dir, address);

error = -ENOMEM;

if (!pmd)

break;

error = zeromap_pmd_range(mm, pmd, address, end - address, prot);

if (error)

break;

address = (address + PGDIR_SIZE) & PGDIR_MASK;

dir++;

248 CHAPTER 6. DEMAND PAGING

} while (address && (address < end));

spin_unlock(&mm->page_table_lock);

flush_tlb_range(mm, beg, end);

return error;

6.0.23 Function remap pte range()

Prototype:

void remap_pte_range(pte_t * pte,

unsigned long address,

unsigned long size,

unsigned long phys_addr,

pgprot_t prot)

unsigned long end;

address &= ~PMD_MASK;

end = address + size;

if (end > PMD_SIZE)

end = PMD_SIZE;

do {

struct page *page;

pte_t oldpage;

oldpage = ptep_get_and_clear(pte);

page = virt_to_page(__va(phys_addr));

if ((!VALID_PAGE(page)) || PageReserved(page))

set_pte(pte, mk_pte_phys(phys_addr, prot));

forget_pte(oldpage);

address += PAGE_SIZE;

phys_addr += PAGE_SIZE;

pte++;

} while (address && (address < end));

6.0.24 Function remap pmd range()

Prototype:

int remap_pmd_range(struct mm_struct *mm,

pmd_t * pmd,

249

unsigned long address,

unsigned long size,

unsigned long phys_addr,

pgprot_t prot)

unsigned long end;

address &= ~PGDIR_MASK;

end = address + size;

if (end > PGDIR_SIZE)

end = PGDIR_SIZE;

phys_addr -= address;

do {

pte_t * pte = pte_alloc(mm, pmd, address);

if (!pte)

return -ENOMEM;

remap_pte_range(pte, address, end - address, address + phys_addr, prot);

address = (address + PMD_SIZE) & PMD_MASK;

pmd++;

} while (address && (address < end));

return 0;

6.0.25 Function remap page range()

Prototype:

int remap_page_range(unsigned long from,

unsigned long phys_addr,

unsigned long size,

pgprot_t prot)

int error = 0;

pgd_t * dir;

unsigned long beg = from;

unsigned long end = from + size;

struct mm_struct *mm = current->mm;

phys_addr -= from;

dir = pgd_offset(mm, from);

flush_cache_range(mm, beg, end);

250 CHAPTER 6. DEMAND PAGING

if (from >= end)

BUG();

spin_lock(&mm->page_table_lock);

do {

pmd_t *pmd = pmd_alloc(mm, dir, from);

error = -ENOMEM;

if (!pmd)

break;

error = remap_pmd_range(mm, pmd, from, end - from, phys_addr + from, prot);

if (error)

break;

from = (from + PGDIR_SIZE) & PGDIR_MASK;

dir++;

} while (from && (from < end));

spin_unlock(&mm->page_table_lock);

flush_tlb_range(mm, beg, end);

return error;

6.0.26 Function establish pte()

Prototype:

void establish_pte(struct vm_area_struct * vma,

unsigned long address,

pte_t *page_table,

pte_t entry)

set_pte(page_table, entry);

flush_tlb_page(vma, address);

update_mmu_cache(vma, address, entry);

6.0.27 Function break cow()

Prototype:

void break_cow(struct vm_area_struct * vma,

struct page * new_page,

unsigned long address,

pte_t *page_table)

251

flush_page_to_ram(new_page);

flush_cache_page(vma, address);

establish_pte(vma, address, page_table, pte_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot))));

6.0.28 Function do wp page()

Prototype:

int do_wp_page(struct mm_struct *mm,

struct vm_area_struct * vma,

unsigned long address,

pte_t *page_table,

pte_t pte)

struct page *old_page, *new_page;

old_page = pte_page(pte);

if (!VALID_PAGE(old_page))

goto bad_wp_page;

if (!TryLockPage(old_page)) {

int reuse = can_share_swap_page(old_page);

unlock_page(old_page);

if (reuse) {

flush_cache_page(vma, address);

establish_pte(vma, address, page_table, pte_mkyoung(pte_mkdirty(pte_mkwrite(pte))));

spin_unlock(&mm->page_table_lock);

return 1; /* Minor fault */

}

}

/*

* Ok, we need to copy. Oh, well..

*/

page_cache_get(old_page);

spin_unlock(&mm->page_table_lock);

new_page = alloc_page(GFP_HIGHUSER);

if (!new_page)

goto no_mem;

252 CHAPTER 6. DEMAND PAGING

copy_cow_page(old_page,new_page,address);

/*

* Re-check the pte - we dropped the lock

*/

spin_lock(&mm->page_table_lock);

if (pte_same(*page_table, pte)) {

if (PageReserved(old_page))

++mm->rss;

break_cow(vma, new_page, address, page_table);

lru_cache_add(new_page);

/* Free the old page.. */

new_page = old_page;

}

spin_unlock(&mm->page_table_lock);

page_cache_release(new_page);

page_cache_release(old_page);

return 1; /* Minor fault */

bad_wp_page:

spin_unlock(&mm->page_table_lock);

printk("do_wp_page: bogus page at address %08lx (page 0x%lx)\n",address,(unsigned long)old_page);

return -1;

no_mem:

page_cache_release(old_page);

return -1;

6.0.29 Function vmtruncate list()

Prototype:

void vmtruncate_list(struct vm_area_struct *mpnt,

unsigned long pgoff)

do {

struct mm_struct *mm = mpnt->vm_mm;

unsigned long start = mpnt->vm_start;

unsigned long end = mpnt->vm_end;

unsigned long len = end - start;

253

unsigned long diff;

/* mapping wholly truncated? */

if (mpnt->vm_pgoff >= pgoff) {

zap_page_range(mm, start, len);

continue;

}

/* mapping wholly unaffected? */

len = len >> PAGE_SHIFT;

diff = pgoff - mpnt->vm_pgoff;

if (diff >= len)

continue;

/* Ok, partially affected.. */

start += diff << PAGE_SHIFT;

len = (len - diff) << PAGE_SHIFT;

zap_page_range(mm, start, len);

} while ((mpnt = mpnt->vm_next_share) != NULL);

6.0.30 Function vmtruncate()

Prototype:

int vmtruncate(struct inode * inode,

loff_t offset)

unsigned long pgoff;

struct address_space *mapping = inode->i_mapping;

unsigned long limit;

if (inode->i_size < offset)

goto do_expand;

inode->i_size = offset;

spin_lock(&mapping->i_shared_lock);

if (!mapping->i_mmap && !mapping->i_mmap_shared)

goto out_unlock;

pgoff = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;

if (mapping->i_mmap != NULL)

254 CHAPTER 6. DEMAND PAGING

vmtruncate_list(mapping->i_mmap, pgoff);

if (mapping->i_mmap_shared != NULL)

vmtruncate_list(mapping->i_mmap_shared, pgoff);

out_unlock:

spin_unlock(&mapping->i_shared_lock);

truncate_inode_pages(mapping, offset);

goto out_truncate;

do_expand:

limit = current->rlim[RLIMIT_FSIZE].rlim_cur;

if (limit != RLIM_INFINITY && offset > limit)

goto out_sig;

if (offset > inode->i_sb->s_maxbytes)

goto out;

inode->i_size = offset;

out_truncate:

if (inode->i_op && inode->i_op->truncate) {

lock_kernel();

inode->i_op->truncate(inode);

unlock_kernel();

}

return 0;

out_sig:

send_sig(SIGXFSZ, current, 0);

out:

return -EFBIG;

6.0.31 Function swapin readahead()

Prototype:

void swapin_readahead(swp_entry_t entry)

int i, num;

struct page *new_page;

unsigned long offset;

/*

255

* Get the number of handles we should do readahead io to.

*/

num = valid_swaphandles(entry, &offset);

for (i = 0; i < num; offset++, i++) {

/* Ok, do the async read-ahead now */

new_page = read_swap_cache_async(SWP_ENTRY(SWP_TYPE(entry), offset));

if (!new_page)

break;

page_cache_release(new_page);

}

return;

6.0.32 Function do swap page()

Prototype:

int do_swap_page(struct mm_struct * mm,

struct vm_area_struct * vma,

unsigned long address,

pte_t * page_table,

pte_t orig_pte,

int write_access)

struct page *page;

swp_entry_t entry = pte_to_swp_entry(orig_pte);

pte_t pte;

int ret = 1;

spin_unlock(&mm->page_table_lock);

page = lookup_swap_cache(entry);

if (!page) {

swapin_readahead(entry);

page = read_swap_cache_async(entry);

if (!page) {

/*

* Back out if somebody else faulted in this pte while

* we released the page table lock.

*/

int retval;

spin_lock(&mm->page_table_lock);

256 CHAPTER 6. DEMAND PAGING

retval = pte_same(*page_table, orig_pte) ? -1 : 1;

spin_unlock(&mm->page_table_lock);

return retval;

}

/* Had to read the page from swap area: Major fault */

ret = 2;

}

mark_page_accessed(page);

lock_page(page);

/*

* Back out if somebody else faulted in this pte while we

* released the page table lock.

*/

spin_lock(&mm->page_table_lock);

if (!pte_same(*page_table, orig_pte)) {

spin_unlock(&mm->page_table_lock);

unlock_page(page);

page_cache_release(page);

return 1;

}

/* The page isn’t present yet, go ahead with the fault. */

swap_free(entry);

if (vm_swap_full())

remove_exclusive_swap_page(page);

mm->rss++;

pte = mk_pte(page, vma->vm_page_prot);

if (write_access && can_share_swap_page(page))

pte = pte_mkdirty(pte_mkwrite(pte));

unlock_page(page);

flush_page_to_ram(page);

flush_icache_page(vma, page);

set_pte(page_table, pte);

257

/* No need to invalidate - it was non-present before */

update_mmu_cache(vma, address, pte);

spin_unlock(&mm->page_table_lock);

return ret;

6.0.33 Function do anonymous page()

Prototype:

int do_anonymous_page(struct mm_struct * mm,

struct vm_area_struct * vma,

pte_t *page_table,

int write_access,

unsigned long addr)

pte_t entry;

/* Read-only mapping of ZERO_PAGE. */

entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));

/* ..except if it’s a write access */

if (write_access) {

struct page *page;

/* Allocate our own private page. */

spin_unlock(&mm->page_table_lock);

page = alloc_page(GFP_HIGHUSER);

if (!page)

goto no_mem;

clear_user_highpage(page, addr);

spin_lock(&mm->page_table_lock);

if (!pte_none(*page_table)) {

page_cache_release(page);

spin_unlock(&mm->page_table_lock);

return 1;

}

mm->rss++;

flush_page_to_ram(page);

258 CHAPTER 6. DEMAND PAGING

entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));

lru_cache_add(page);

mark_page_accessed(page);

}

set_pte(page_table, entry);

/* No need to invalidate - it was non-present before */

update_mmu_cache(vma, addr, entry);

spin_unlock(&mm->page_table_lock);

return 1; /* Minor fault */

no_mem:

return -1;

6.0.34 Function do no page()

Prototype:

int do_no_page(struct mm_struct * mm,

struct vm_area_struct * vma,

unsigned long address,

int write_access,

pte_t *page_table)

struct page * new_page;

pte_t entry;

if (!vma->vm_ops || !vma->vm_ops->nopage)

return do_anonymous_page(mm, vma, page_table, write_access, address);

spin_unlock(&mm->page_table_lock);

new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, 0);

if (new_page == NULL) /* no page was available -- SIGBUS */

return 0;

if (new_page == NOPAGE_OOM)

return -1;

/*

259

* Should we do an early C-O-W break?

*/

if (write_access && !(vma->vm_flags & VM_SHARED)) {

struct page * page = alloc_page(GFP_HIGHUSER);

if (!page) {

page_cache_release(new_page);

return -1;

}

copy_user_highpage(page, new_page, address);

page_cache_release(new_page);

lru_cache_add(page);

new_page = page;

}

spin_lock(&mm->page_table_lock);

/*

* This silly early PAGE_DIRTY setting removes a race

* due to the bad i386 page protection. But it’s valid

* for other architectures too.

*

* Note that if write_access is true, we either now have

* an exclusive copy of the page, or this is a shared mapping,

* so we can make it writable and dirty to avoid having to

* handle that later.

*/

/* Only go through if we didn’t race with anybody else... */

if (pte_none(*page_table)) {

++mm->rss;

flush_page_to_ram(new_page);

flush_icache_page(vma, new_page);

entry = mk_pte(new_page, vma->vm_page_prot);

if (write_access)

entry = pte_mkwrite(pte_mkdirty(entry));

set_pte(page_table, entry);

} else {

/* One of our sibling threads was faster, back out. */

page_cache_release(new_page);

spin_unlock(&mm->page_table_lock);

return 1;

}

260 CHAPTER 6. DEMAND PAGING

/* no need to invalidate: a not-present page shouldn’t be cached */

update_mmu_cache(vma, address, entry);

spin_unlock(&mm->page_table_lock);

return 2; /* Major fault */

6.0.35 Function handle pte fault()

Prototype:

int handle_pte_fault(struct mm_struct *mm,

struct vm_area_struct * vma,

unsigned long address,

int write_access,

pte_t * pte)

pte_t entry;

entry = *pte;

if (!pte_present(entry)) {

/*

* If it truly wasn’t present, we know that kswapd

* and the PTE updates will not touch it later. So

* drop the lock.

*/

if (pte_none(entry))

return do_no_page(mm, vma, address, write_access, pte);

return do_swap_page(mm, vma, address, pte, entry, write_access);

}

if (write_access) {

if (!pte_write(entry))

return do_wp_page(mm, vma, address, pte, entry);

entry = pte_mkdirty(entry);

}

entry = pte_mkyoung(entry);

establish_pte(vma, address, pte, entry);

spin_unlock(&mm->page_table_lock);

return 1;

261

6.0.36 Function handle mm fault()

Prototype:

int handle_mm_fault(struct mm_struct *mm,

struct vm_area_struct * vma,

unsigned long address,

int write_access)

pgd_t *pgd;

pmd_t *pmd;

current->state = TASK_RUNNING;

pgd = pgd_offset(mm, address);

/*

* We need the page table lock to synchronize with kswapd

* and the SMP-safe atomic PTE updates.

*/

spin_lock(&mm->page_table_lock);

pmd = pmd_alloc(mm, pgd, address);

if (pmd) {

pte_t * pte = pte_alloc(mm, pmd, address);

if (pte)

return handle_pte_fault(mm, vma, address, write_access, pte);

}

spin_unlock(&mm->page_table_lock);

return -1;

6.0.37 Function pmd alloc()

Prototype:

pmd_t *__pmd_alloc(struct mm_struct *mm,

pgd_t *pgd,

unsigned long address)

pmd_t *new;

262 CHAPTER 6. DEMAND PAGING

/* "fast" allocation can happen without dropping the lock.. */

new = pmd_alloc_one_fast(mm, address);

if (!new) {

spin_unlock(&mm->page_table_lock);

new = pmd_alloc_one(mm, address);

spin_lock(&mm->page_table_lock);

if (!new)

return NULL;

/*

* Because we dropped the lock, we should re-check the

* entry, as somebody else could have populated it..

*/

if (!pgd_none(*pgd)) {

pmd_free(new);

goto out;

}

}

pgd_populate(mm, pgd, new);

out:

return pmd_offset(pgd, address);

6.0.38 Function pte alloc()

Prototype:

pte_t *pte_alloc(struct mm_struct *mm,

pmd_t *pmd,

unsigned long address)

if (pmd_none(*pmd)) {

pte_t *new;

/* "fast" allocation can happen without dropping the lock.. */

new = pte_alloc_one_fast(mm, address);

if (!new) {

spin_unlock(&mm->page_table_lock);

new = pte_alloc_one(mm, address);

spin_lock(&mm->page_table_lock);

if (!new)

263

return NULL;

/*

* Because we dropped the lock, we should re-check the

* entry, as somebody else could have populated it..

*/

if (!pmd_none(*pmd)) {

pte_free(new);

goto out;

}

}

pmd_populate(mm, pmd, new);

}

out:

return pte_offset(pmd, address);

6.0.39 Function make pages present()

Prototype:

int make_pages_present(unsigned long addr,

unsigned long end)

int ret, len, write;

struct vm_area_struct * vma;

vma = find_vma(current->mm, addr);

write = (vma->vm_flags & VM_WRITE) != 0;

if (addr >= end)

BUG();

if (end > vma->vm_end)

BUG();

len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;

ret = get_user_pages(current, current->mm, addr,

len, write, 0, NULL, NULL);

return ret == len ? 0 : -1;

6.0.40 Function vmalloc to page()

Prototype:

264 CHAPTER 6. DEMAND PAGING

struct page * vmalloc_to_page(void * vmalloc_addr)

unsigned long addr = (unsigned long) vmalloc_addr;

struct page *page = NULL;

pmd_t *pmd;

pte_t *pte;

pgd_t *pgd;

pgd = pgd_offset_k(addr);

if (!pgd_none(*pgd)) {

pmd = pmd_offset(pgd, addr);

if (!pmd_none(*pmd)) {

pte = pte_offset(pmd, addr);

if (pte_present(*pte)) {

page = pte_page(*pte);

}

}

}

return page;

}

Chapter 7

The Page Cache

7.1 The Buffer Cache

265

266 CHAPTER 7. THE PAGE CACHE

Chapter 8

Swapping

8.1 Structures

8.1.1 swp entry t

File: include/linux/shmem_fs.h

This type defines a swap entry address.

typedef struct {

unsigned long val;

} swp_entry_t;

val
Stores the swap entry address. This address is dependant on the ar-
chitecture and the arch-independent code uses some macros to handle
these addresses:

SWP ENTRY(type, offset)
Given a type and offset, returns a swap entry. On i386, the
type is stored within the bits 1 and 7, the offset within 8 and
31. The bit 0 is used by the PRESENT bit, i.e, it is always zero.

SWP TYPE(x)
From a swap entry, it returns its swap type.

SWP OFFSET(x)
From a swap entry, it returns its swap offset.

267

include/linux/shmem_fs.h

268 CHAPTER 8. SWAPPING

8.1.2 struct swap info struct

File: include/linux/swap.h

This struct is defined for each swap area (partition or device). It holds all
information about the swap area, like flags and the swap map used to assign
and control swap entries.

struct swap_info_struct {

unsigned int flags;

kdev_t swap_device;

spinlock_t sdev_lock;

struct dentry * swap_file;

struct vfsmount *swap_vfsmnt;

unsigned short * swap_map;

unsigned int lowest_bit;

unsigned int highest_bit;

unsigned int cluster_next;

unsigned int cluster_nr;

int prio; /* swap priority */

int pages;

unsigned long max;

int next; /* next entry on swap list */

};

flags
Used to mark this swap area as used (SWP USED), writeable
(SWP WRITEOK) or unused (zero).

swap device
Pointer to the device if this area is a partition. It is NULL for swap
files.

sdev lock
Spinlock that protects this struct and all its fields.

swap file
Pointer to the dentry of the partition or file.

swap vfsmnt
Pointer to the mount point.

include/linux/swap.h

8.2. FREEING PAGES FROM CACHES 269

swap map
Array that holds information about all the swap entries. This infor-
mation consists of a counter that, when zero, means that the entry is
free.

lowest bit
Stores the lowest offset within the swap map which has a free entry
(counter is zero).

highest bit
Stores the highest offset within the swap map which has a free entry
(counter is zero).

cluster next
Holds the next offset in the current swap cluster. This will be the
starting point when checking the swap map for a free entry.

cluster nr
Accounts the number of missing entries to finish the current cluster.

prio
Priority of this swap area.

pages
Number of good pages on this swap area (i.e, total number minus the
number of bad pages and the first block).

max
Maximum number of pages on this swap area.

next
Next swap area on the swap list.

8.2 Freeing Pages from Caches

8.2.1 LRU lists

The Linux VM architecture is composed of two LRU lists known as active
and inactive lists. As soon as a page is added to the page cache (includes
swap cache), it is added to the inactive list. The aging process tries to
detect, through the page table entry bits and the page bits, which pages are
the most accessed, moving them to the active list.

270 CHAPTER 8. SWAPPING

Under memory pressure scenarios, the VM first tries to free memory by
reaping slab caches. When that procedure does not free enough memory, it
focus on freeing memory from the page cache. Firstly, it checks the pages on
the active list, moving the less accessed ones to the inactive list, refilling it.
Secondly, the inactive list is scanned, synchronizing the pages with buffers
and trying to free the freeable pages (i.e, pages without users). If dirty
freeable pages are found, they are written out.

Figure 8.1: LRU lists

Nevertheless, pages on the active and inactive lists may have users,
what usually means that they are mapped by processes. When many mapped
pages are found on the inactive list, the unmapping process is invoked calling
swap out() function (check out the Unmapping Pages from Processes
section).

As a last resource, if unable to free pages from the page cache, the VM

8.2. FREEING PAGES FROM CACHES 271

system shrinks the file system caches, like the inode cache, dentry cache and
quota cache.

If still unable to free memory, the VM system runs into the out of memory
scenario, where it picks an active process and tries to kill it to free memory.

8.2.2 Function shrink cache()

File: mm/vmscan.c

Prototype:

int shrink_cache(int nr_pages,

zone_t * classzone,

unsigned int gfp_mask,

int priority)

This function shrinks the page and swap cache, checking the inactive list
and trying to free pages from it. It may be needed to clean dirty pages by
writing them, what will be done if possible (ie, gfp mask allows).

The return value is an int value. If zero, it means that the function
could free the number of pages requested previously (nr pages parameter).
If not zero, the value means how many pages were missed to free in order
to achieve the requested number of pages. For example, a return value of 3
means that this function was able of free (nr pages - 3) pages.

struct list_head * entry;

int max_scan = nr_inactive_pages / priority;

int max_mapped = min((nr_pages < < (10 - priority)),

max_scan / 10);

Here it is calculated how many pages at most will be scanned by this
function if it cannot return first (max scan variable). This value is based
on the number of inactive pages (ie. pages on the inactive list) and on the
priority. In this case, lower the priority, higher the number of pages that may
be scanned.

The maximum number of mapped pages that can be found during the scan
process is also computed here (max mapped variable). It will be the maximum
value between the nr pages times a value dependant on the priority and a
tenth of the max scan value. Both values (max scan and max mapped) are
known as magic values.

spin_lock(&pagemap_lru_lock);

while (--max_scan >= 0 &&

(entry = inactive_list.prev) != &inactive_list) {

mm/vmscan.c

272 CHAPTER 8. SWAPPING

The while is very clear. It is scanned the minimum value between
max scan number of pages and the whole inactive list.

Two other return conditions will be found below. If the maximum number
of mapped pages is reached or the requested number of pages has been freed,
this function will return too.

struct page * page;

if (unlikely(current->need_resched)) {

spin_unlock(&pagemap_lru_lock);

__set_current_state(TASK_RUNNING);

schedule();

spin_lock(&pagemap_lru_lock);

continue;

}

Improves fairness among process by rescheduling the process if it has been
for a long time using CPU resources.

page = list_entry(entry, struct page, lru);

BUG_ON(!PageLRU(page));

BUG_ON(PageActive(page));

list_del(entry);

list_add(entry, &inactive_list);

Obtains the page from struct list head pointer, and move it to the
back of the inactive list.

/*

* Zero page counts can happen because we unlink the pages

* _after_ decrementing the usage count..

*/

if (unlikely(!page_count(page)))

continue;

Since the page may be removed from lru lists after having its counter
decremented, a race condition may happen: this page gets accessed here
right after its counter is zeroed, but before being unlinked from the lru lists.
The above if handles this case.

8.2. FREEING PAGES FROM CACHES 273

if (!memclass(page_zone(page), classzone))

continue;

Only checks pages that are from the zone which is under pressure.

/* Racy check to avoid trylocking when not worthwhile */

if (!page->buffers && (page_count(page) != 1 ||

!page->mapping))

goto page_mapped;

Before trying to lock the page, first checks if it is mapped or anonymous
and does not have buffers to be freed. If those conditions are true, account
it as a mapped page (see below). In case it has buffers, even if mapped to
processes, go on to try to free them (what may imply to synchronize).

/*

* The page is locked. IO in progress?

* Move it to the back of the list.

*/

if (unlikely(TryLockPage(page))) {

if (PageLaunder(page) &&

(gfp_mask & __GFP_FS)) {

page_cache_get(page);

spin_unlock(&pagemap_lru_lock);

wait_on_page(page);

page_cache_release(page);

spin_lock(&pagemap_lru_lock);

}

continue;

}

Tries to lock the page at once. If it is locked and PageLaunder bit is true,
wait until it gets unlocked. PageLaunder bit will be only set for a page that
has been submitted to IO in order to be cleaned in this function. Of course,
wait on the page will only take place if gfp mask allows it.

A reference on this page is got (page cache get()) before sleeping (to
wait on the page) to ensure it will not be freed in the meanwhile.

There is an obsolete comment above (Move it to the back of the list). It
does not make sense since the page has already been moved to the back of
the list.

if (PageDirty(page) && is_page_cache_freeable(page) &&

page->mapping) {

274 CHAPTER 8. SWAPPING

Dirty pages completely unmapped by processes that are in the page cache
(swap cache is only a part of it) are eligible to be written to its backing
storage. Even if a page table entry (pte) accesses this page, it will be only
remapped after the IO is complete, ie, the faultin path is able lock this page.

/*

* It is not critical here to write it only if

* the page is unmapped beause any direct writer

* like O_DIRECT would set the PG_dirty bitflag

* on the phisical page after having successfully

* pinned it and after the I/O to the page is

* finished, so the direct writes to the page

* cannot get lost.

*/

int (*writepage)(struct page *);

writepage = page->mapping->a_ops->writepage;

if ((gfp_mask & __GFP_FS) && writepage) {

ClearPageDirty(page);

SetPageLaunder(page);

page_cache_get(page);

spin_unlock(&pagemap_lru_lock);

writepage(page);

page_cache_release(page);

spin_lock(&pagemap_lru_lock);

continue;

}

}

Only pages from page cache which have the writepage() function defined
can be cleaned. Actually, the gfp mask is also checked to know if it allows
this code path to perform FS operations. When both are true, the page
PageLaunder bit is set, its Dirty bit is cleared, and the writepage() function
is called. Here a reference to the page is got in order to avoid it to be
ocasionally freed in the meanwhile.

/*

* If the page has buffers, try to free the buffer

* mappings associated with this page. If we succeed

8.2. FREEING PAGES FROM CACHES 275

* we try to free the page as well.

*/

if (page->buffers) {

spin_unlock(&pagemap_lru_lock);

/* avoid to free a locked page */

page_cache_get(page);

if (try_to_release_page(page, gfp_mask)) {

Does the page have buffers? No matter if is completely unmapped from
its processes, tries to free them by calling try to release page() function
which will eventually call try to free buffers(). The latter function will
free the buffers if they are clean, otherwise will synchronize them (gfp mask

must allow that).

if (!page->mapping) {

/*

* We must not allow an anon page

* with no buffers to be visible

* on the LRU, so we unlock the

* page after taking the lru lock

*/

spin_lock(&pagemap_lru_lock);

UnlockPage(page);

__lru_cache_del(page);

/* effectively free the page here */

page_cache_release(page);

if (--nr_pages)

continue;

break;

The page has had its buffers freed. Is it an anonymous page? In order
to be an anonymous page with buffers, it must have already been unmapped
from all processes that have mapped it beforehand. It has also been removed
from the page cache since its mapping had to invalidate/truncate its pages.
In this case, simply remove the page from the inactive list and release it.

} else {

276 CHAPTER 8. SWAPPING

/*

* The page is still in pagecache

* so undo the stuff before the

* try_to_release_page since we’ve

* not finished and we can now

* try the next step.

*/

page_cache_release(page);

spin_lock(&pagemap_lru_lock);

}

The pages’s buffers are gone, so goes on to the next step since the page
is still in the page cache. It needs to be removed from the page cache if it is
completely unmapped from process. Otherwise, gives up on it since it is still
to be unmapped and it is not freeable at this moment.

} else {

/* failed to drop the buffers

* so stop here */

UnlockPage(page);

page_cache_release(page);

spin_lock(&pagemap_lru_lock);

continue;

}

}

The buffers could not be freed, so gives up on this page. It is time to try
another page from the inactive list.

spin_lock(&pagecache_lock);

/*

* this is the non-racy check for busy page.

*/

if (!page->mapping || !is_page_cache_freeable(page)) {

spin_unlock(&pagecache_lock);

UnlockPage(page);

page_mapped:

if (--max_mapped >= 0)

continue;

8.2. FREEING PAGES FROM CACHES 277

For anonymous pages without buffers, that is a race check since they
probably have been removed from the page cache in the meantime. For
pages from page cache that just had its buffers freed and are still mapped by
processes, accounts them to the max mapped variable.

/*

* Alert! We’ve found too many mapped pages on the

* inactive list, so we start swapping out now!

*/

spin_unlock(&pagemap_lru_lock);

swap_out(priority, gfp_mask, classzone);

return nr_pages;

}

When a max mapped number of pages have been observed to be mapped to
processes, starts unmapping pages that are still mapped to processes. That
is why swap out() function is called here. After it gets called, returns since
reaching a max mapped number of mapped pages is one of the conditions to
stop the scan process.

/*

* It is critical to check PageDirty _after_ we made sure

* the page is freeable* so not in use by anybody.

*/

if (PageDirty(page)) {

spin_unlock(&pagecache_lock);

UnlockPage(page);

continue;

}

Checks once again for the dirtiness of the page since it might have been
set dirty right after being unmapped by any process (for example, in mem-
ory.c: free pte()).

/* point of no return */

if (likely(!PageSwapCache(page))) {

__remove_inode_page(page);

spin_unlock(&pagecache_lock);

} else {

swp_entry_t swap;

swap.val = page->index;

__delete_from_swap_cache(page);

278 CHAPTER 8. SWAPPING

spin_unlock(&pagecache_lock);

swap_free(swap);

}

__lru_cache_del(page);

UnlockPage(page);

/* effectively free the page here */

page_cache_release(page);

if (--nr_pages)

continue;

break;

}

spin_unlock(&pagemap_lru_lock);

return nr_pages;

That is the part of the code where the page is not mapped by any process,
it is not dirty and does not have buffers, so it can be removed from page cache
(removing from swap cache will remove from the page cache anyway), deleted
from LRU lists (inactive list) and freed.

8.2.3 Function refill inactive()

File: mm/vmscan.c

Prototype:

void refill_inactive(int nr_pages)

This function tries to to move a requested number of pages (nr pages)
from the active list to the inactive list. It also updates the aging of every
page checked. The aging is represented by the Referenced bit.

struct list_head * entry;

spin_lock(&pagemap_lru_lock);

entry = active_list.prev;

while (nr_pages && entry != &active_list) {

Stops when all the pages on the active list have been scanned or the
requested number of pages has been moved to the inactive list.

mm/vmscan.c

8.2. FREEING PAGES FROM CACHES 279

struct page * page;

page = list_entry(entry, struct page, lru);

entry = entry->prev;

if (PageTestandClearReferenced(page)) {

list_del(&page->lru);

list_add(&page->lru, &active_list);

continue;

}

Pages with Referenced bit on are likely to have been accessed recently,
so clear this bit and move them to the back of active list since they are likely
to be accessed soon again.

nr_pages--;

del_page_from_active_list(page);

add_page_to_inactive_list(page);

SetPageReferenced(page);

}

spin_unlock(&pagemap_lru_lock);

Pages that do not have Referenced bit on are taken as old pages, so can
moved to inactive list. Mark this page as Referenced, so if they are accessed
when on the inactive list, they will be moved back to active list at the first
access.

8.2.4 Function shrink caches()

File: mm/vmscan.c

Prototype:

int shrink_caches(zone_t * classzone,

int priority,

unsigned int gfp_mask,

int nr_pages)

Very important role in the page freeing process, this function defines the
priority for each type of memory (slab caches, page and swap caches, dentry
cache, inode cache and quota cache), trying to free the pages in the order
previously set.

mm/vmscan.c

280 CHAPTER 8. SWAPPING

Given a zone (classzone parameter), this very function tries to free the
requested number of pages (nr pages parameter), following a GFP mask for
permissions throughout the freeing process (gfp mask) and a priority that
is used to know how hard it must tried to free pages from a certain type of
memory.

The return value is an integer value. A zero value means that the re-
quested number of pages has been freed. A non-zero value is the number of
pages missed to achieve the requested number of pages.

int chunk_size = nr_pages;

The requested number of pages to be freed is stored in chunk size vari-
able, since it may be changed and the original value will be needed below.

unsigned long ratio;

nr_pages -= kmem_cache_reap(gfp_mask);

The first try is to reap all the slab caches that can be reaped (that is
defined when creating a slab cache). Thus, all those slab caches will free the
memory pages that have only unused data structures.

if (nr_pages <= 0)

return 0;

When only reaping the slab caches could free all the requested number of
pages, return.

nr_pages = chunk_size;

For many times, reaping the slab caches will not make the requested
number of pages, so try to free the original number of pages from other types
of pages (page and swap cache). Restoring the original number of pages
instead of using the missing number of pages is used since shrink cache()

(to be called) may write out memory pages and if that happens, it is nice to
write a chunk of them.

/* try to keep the active list 2/3 of the size of the cache */

ratio = (unsigned long) nr_pages *

nr_active_pages / ((nr_inactive_pages + 1) * 2);

refill_inactive(ratio);

8.2. FREEING PAGES FROM CACHES 281

The first step to free pages from page and swap caches is to refill the
inactive list, since only pages from this list are freed. In order to keep the
active list not empty, it is computed how many pages (at most) should be
moved to inactive list (ratio variable).

Note: one is added to the number of inactive page (nr inactive pages

+ 1) to handle the case where the nr inactive pages is zero.

nr_pages = shrink_cache(nr_pages, classzone, gfp_mask, priority);

No matter the inactive list has been refilled or not, calls shrink cache()

function to shrink the page and swap caches.

if (nr_pages <= 0)

return 0;

If all the requested number of pages has been freed from page and swap
caches, return.

shrink_dcache_memory(priority, gfp_mask);

shrink_icache_memory(priority, gfp_mask);

#ifdef CONFIG_QUOTA

shrink_dqcache_memory(DEF_PRIORITY, gfp_mask);

#endif

return nr_pages;

As a last try, shrink the dentry cache, the inode cache and also the quota
cache (if quota is enabled). Even if these caches have been shrunk, return
as having failed (return the number of missed pages to achieve the original
requested number). This last try is done to free some memory and avoid
many failed allocations, but they will not avoid calling out of memory() if
that’s the case (check below).

8.2.5 Function try to free pages()

Prototype:

int try_to_free_pages(zone_t *classzone,

unsigned int gfp_mask,

unsigned int order)

282 CHAPTER 8. SWAPPING

Simple function that tries to free pages from a certain zone (classzone
parameter) by calling shrink caches(), increasing priority if necessary. The
shrink caches() will follow the GFP mask (gfp mask parameter).

In the case it has not been able to free the defined number of pages
(SWAP CLUSTER MAX), calls out of memory() function which may kill some
application.

It returns an int value. A value of one means that this function was
sucessful freeing the defined number of pages and zero if it has failed.

The order parameter is unused.

int priority = DEF_PRIORITY;

int nr_pages = SWAP_CLUSTER_MAX;

gfp_mask = pf_gfp_mask(gfp_mask);

If the current task cannot block on IO operations, the pf gfp mask()

macro makes sure the gfp mask signs that.

do {

nr_pages = shrink_caches(classzone, priority, gfp_mask,

nr_pages);

if (nr_pages <= 0)

return 1;

} while (--priority);

Starting with the lowest priority, tries to free the defined number of pages.
If it couldn’t make it, increases priority (by decreasing the priority variable)
and try again.

/*

* Hmm.. Cache shrink failed - time to kill something?

* Mhwahahhaha! This is the part I really like. Giggle.

*/

out_of_memory();

return 0;

Couldn’t free the enough number of pages, even with the highest priority?
Checks if it is time of kill some application calling out of memory() function.

8.3. UNMAPPING PAGES FROM PROCESSES 283

8.3 Unmapping Pages from Processes

Systems the have many mapped pages on the inactive list (see Freeing
Pages from Caches section) must start to unmap pages from the processes.
It means that process will start to have their page tables scanned and all the
page table entries checked. Entries not accessed recently will be cleared
(unmapped) and, when previously set to anonymous pages, set to a new
address (remapped). Anonymous pages are pages without a backing store.

Figure 8.2: Unmapping Process

8.3.1 Function try to swap out()

File: mm/vmscan.c

Prototype:

mm/vmscan.c

284 CHAPTER 8. SWAPPING

int try_to_swap_out(struct mm_struct * mm,

struct vm_area_struct* vma,

unsigned long address,

pte_t * page_table,

struct page *page,

zone_t * classzone)

The role of the try to swap out() function is to try to unmap pages from
processes mapping them. This is the first part of the whole swap out process,
since pages can only be freed if all processes mapping them have already been
safely unmapped. Unmapping means that, given a page table entry (pte),
either it is just cleared (file mapped pages) or remapped to a swap address
(anonymous pages). In both cases (cleared or remapped to swap address),
the present bit of the new pte will be off. Therefore, the process to which
this pte belongs will not be able to access it directly, causing a page fault for
any future access.

This function returns an int value. That value will be zero if no freeable
page (ie, a page not mapped by any process any longer) has been freed. That
will happen even in the case a page got unmapped from a process, but is still
mapped by other processes. That return value will be one if a page has
been freed from its last process (no process is mapping it at the moment this
function exits).

pte_t pte;

swp_entry_t entry;

/* Don’t look at this pte if it’s been accessed recently. */

if ((vma->vm_flags & VM_LOCKED)

|| ptep_test_and_clear_young(page_table)) {

mark_page_accessed(page);

return 0;

}

That is part of VM aging process. Here, based on the young bit from
the pte, try to swap out() sets this page as accessed (Accessed bit). If this
page is already set as accessed (i.e, the second time it is set accessed) and
it happens that it is still on inactive list, mark page accessed() will move
this page to the active list. The page previously set as accessed will have its
Accessed bit cleared though.

The page will also be marked as accessed if this vm area is locked by
mlock system call.

8.3. UNMAPPING PAGES FROM PROCESSES 285

/* Don’t bother unmapping pages that are active */

if (PageActive(page))

return 0;

Active pages are supposed to have been accessed often. Therefore, it is
worthless to unmap them since it is likely they will be mapped back soon.

/* Don’t bother replenishing zones not under pressure.. */

if (!memclass(page_zone(page), classzone))

return 0;

It is unreasonable free pages from zones other that the ones that are under
memory shortage.

if (TryLockPage(page))

return 0;

The page is tried to lock at once (i.e, do not sleep to get lock on this
page) given that the unmapping process is not dependant on an specific page
and it is not worth to sleep to try to unmap any page.

/* From this point on, the odds are that we’re going to

* nuke this pte, so read and clear the pte. This hook

* is needed on CPUs which update the accessed and dirty

* bits in hardware.

*/

flush_cache_page(vma, address);

pte = ptep_get_and_clear(page_table);

flush_tlb_page(vma, address);

Read the page table entry data into pte. Also clear it in the page table to
avoid having this pte modified in the meanwhile (for example in cases where
CPUs that update bits like accessed and dirty in hardware, like explained in
the comment).

if (pte_dirty(pte))

set_page_dirty(page);

/*

* Is the page already in the swap cache? If so, then

* we can just drop our reference to it without doing

* any IO - it’s already up-to-date on disk.

286 CHAPTER 8. SWAPPING

*/

if (PageSwapCache(page)) {

entry.val = page->index;

swap_duplicate(entry);

set_swap_pte:

set_pte(page_table, swp_entry_to_pte(entry));

In the case this page has already been added to the swap cache, there is
only the need to increase the swap entry counter (swap duplicate()) and
set this pte to the swap address this swap cache page is already set to. The
swap address is stored in the index field of the struct page.

drop_pte:

mm->rss--;

The process which has this page unmapped will have its RSS number
decreased.

UnlockPage(page);

{

int freeable = page_count(page) - !!page->buffers <= 2;

page_cache_release(page);

return freeable;

}

}

If there are no more users of this page (including processes mapping it),
the return value will be one, since this page is completely unmapped from
the processes and can be freed. Otherwise, the return value will be zero.

/*

* Is it a clean page? Then it must be recoverable

* by just paging it in again, and we can just drop

* it.. or if it’s dirty but has backing store,

* just mark the page dirty and drop it.

*

* However, this won’t actually free any real

* memory, as the page will just be in the page cache

* somewhere, and as such we should just continue

* our scan.

*

* Basically, this just makes it possible for us to do

8.3. UNMAPPING PAGES FROM PROCESSES 287

* some real work in the future in "refill_inactive()".

*/

if (page->mapping)

goto drop_pte;

if (!PageDirty(page))

goto drop_pte;

/*

* Anonymous buffercache pages can be left behind by

* concurrent truncate and pagefault.

*/

if (page->buffers)

goto preserve;

Anonymous pages are pages without backing store, ie. not mapped to
any address space. Anonymous buffer cache pages are anonymous pages with
buffers. In particular, these pages have already been mapped to an address
space, but aren’t any longer because of a concurrent truncate operation and
page fault.

/*

* This is a dirty, swappable page. First of all,

* get a suitable swap entry for it, and make sure

* we have the swap cache set up to associate the

* page with that swap entry.

*/

for (;;) {

entry = get_swap_page();

if (!entry.val)

break;

/* Add it to the swap cache and mark it dirty

* (adding to the page cache will clear the dirty

* and uptodate bits, so we need to do it again)

*/

if (add_to_swap_cache(page, entry) == 0) {

SetPageUptodate(page);

set_page_dirty(page);

goto set_swap_pte;

}

That is a dirty and anonymous page, so let’s get a swap entry for it in
order to remap its pte to this new address. Once a swap entry has been got,

288 CHAPTER 8. SWAPPING

this page will be added to the swap cache, which will, for its turn, add it to
the page cache and also a LRU list (actually the inactive one).

Given that this page has no backing store (recall it is an anonymous
page), this page needs to be set as dirty in order to not be released without
being stored on the swap.

/* Raced with "speculative" read_swap_cache_async */

swap_free(entry);

}

When servicing a page fault for a swap address, some pages are read
ahead if the page is not present in the swap cache. In this case, a page might
have been added to the swap cache by the read ahead code (to be read from
disk) with the very swap entry just got above, but before this code path
could add it to the cache. Thus it is necessary to drop the counter of this
swap entry and get a new one.

/* No swap space left */

preserve:

set_pte(page_table, pte);

UnlockPage(page);

return 0;

A free swap entry was not available, so no swap space is left. Hence
try to swap out() is unable to unmap this anonymous page. So, sets the
page table entry back to the original value and returns zero since no freeable
page has been unmapped after this try.

8.3.2 Function swap out pmd()

File: mm/vmscan.c

Prototype:

int swap_out_pmd(struct mm_struct * mm,

struct vm_area_struct * vma,

pmd_t *dir, unsigned long address,

unsigned long end, int count,

zone_t * classzone)

This function scans all the page table entries of a page middle directory
(dir parameter) until the end of the page middle directory or the end of the
vm area. It returns an int value, which is the number of pages missed to reach
the requested number of completely unmapped pages (count parameter).

mm/vmscan.c

8.3. UNMAPPING PAGES FROM PROCESSES 289

pte_t * pte;

unsigned long pmd_end;

if (pmd_none(*dir))

return count;

Returns the original count value when the page middle directory points
to no page table.

if (pmd_bad(*dir)) {

pmd_ERROR(*dir);

pmd_clear(dir);

return count;

}

Checks if the contents of this memory address points to a valid page
table. In this case, prints an error message (pmd ERROR()), clears this entry
and returns.

pte = pte_offset(dir, address);

From the page middle directory pointer and the address, gets the pointer
to a page table entry.

pmd_end = (address + PMD_SIZE) & PMD_MASK;

if (end > pmd_end)

end = pmd_end;

Computes the end of the page table pointed by this page middle directory
entry. If the end of the VM area is beyond the end of this page table, set
this variable (end) to this value.

do {

if (pte_present(*pte)) {

Only page table entries that are mapped to pages in memory can be
unmapped. That way, page table entries set to no page or set to swap
addresses are not scanned by try to swap out().

struct page *page = pte_page(*pte);

if (VALID_PAGE(page) && !PageReserved(page)) {

290 CHAPTER 8. SWAPPING

Given the page table entry (pte), gets the page to which this page table
entry is mapped and checks if it is a valid address as well as if it not reserved.
Reserved pages cannot be unmapped from their processes.

count -= try_to_swap_out(mm, vma,

address, pte, page, classzone);

Calls try to swap out() function that will try to unmap this page (page
variable) from the page table entry which is mapped to it. It will return 1 if it
has unmapped and this page is freeable (i.e, does not have other users). The
return value of 0 does not mean that the page has not been unmapped, but
simply that it is not freeable (ie, it has other users, probably other processes
still map it).

if (!count) {

address += PAGE_SIZE;

break;

}

If the initial requested number of completely unmapped pages have been
reached, return. Since the swap address (the last address scanned to be
swapped out) of the mm struct is updated here, adds the page size to the
address variable, since this address has been scanned and the scan should be
resumed from the next address.

}

}

address += PAGE_SIZE;

pte++;

} while (address && (address < end));

Updates the address variable to the next address and the pte pointer to
the next offset to be scanned. Stops the loop when address is beyond the
VM area.

mm->swap_address = address;

return count;

Updates the last address scanned in mm struct and return the count vari-
able, which informs the number of pages missed to reach the inital requested
number of completely unmapped pages.

8.3. UNMAPPING PAGES FROM PROCESSES 291

8.3.3 Function swap out pgd()

File: mm/vmscan.c

Prototype:

int swap_out_pgd(struct mm_struct * mm,

struct vm_area_struct * vma,

pgd_t *dir, unsigned long address,

unsigned long end, int count,

zone_t * classzone)

This function scans all the page middle directories of a page global direc-
tory offset (dir parameter) until the end of the vm area (vma parameter).
It returns an int value, which means how many pages are missing to the
requested number of completely unmapped pages (count parameter).

pmd_t * pmd;

unsigned long pgd_end;

if (pgd_none(*dir))

return count;

Returns the original count value when the page global directory points
to no page middle directory.

if (pgd_bad(*dir)) {

pgd_ERROR(*dir);

pgd_clear(dir);

return count;

}

Checks if the entry points to a bad page table. In this case, prints that
an error message (pgd ERROR()), clears this entry and returns the original
count value.

pmd = pmd_offset(dir, address);

From the page global directory entry and the address, gets the pointer to
the page table to be scanned.

pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK;

if (pgd_end && (end > pgd_end))

end = pgd_end;

mm/vmscan.c

292 CHAPTER 8. SWAPPING

Obtains the end of the space addressable by this page global directory. If
the end of the VM area is greater than the end of this page global directory,
the new end will be the page global directory boundary.

do {

count = swap_out_pmd(mm, vma, pmd, address, end, count,

classzone);

For every page table (until the end of the vm area), scans all its page
table entries in swap out pmd() function.

if (!count)

break;

The return value of swap out pmd() function tells how many pages still
need to be unmapped to reach the initial requested number. If all the needed
pages have been unmapped, stops scanning and return.

address = (address + PMD_SIZE) & PMD_MASK;

pmd++;

} while (address && (address < end));

return count;

Goes to the next page middle directory, updating the start address of
it (address variable) and the offset within the page global directory (pmd
variable).

8.3.4 Function swap out vma()

File: mm/vmscan.c

Prototype:

int swap_out_vma(struct mm_struct * mm,

struct vm_area_struct * vma,

unsigned long address,

int count, zone_t * classzone)

This function scans a VM area (vma parameter), returning the number of
missing pages to reach the requested number of completely unmapped pages
(count parameter).

mm/vmscan.c

8.3. UNMAPPING PAGES FROM PROCESSES 293

pgd_t *pgdir;

unsigned long end;

/* Don’t swap out areas which are reserved */

if (vma->vm_flags & VM_RESERVED)

return count;

Some special cases (usually drivers) define the VM area as reserved
(VM RESERVED flag) to avoid this VM area to have its entries unmapped.

pgdir = pgd_offset(mm, address);

Now, based on the mm struct and the address to be scanned, gets the
page middle directory (actually the offset within the page global directory)
to scan.

end = vma->vm_end;

BUG_ON(address >= end);

do {

count = swap_out_pgd(mm, vma, pgdir, address, end,

count, classzone);

Calls swap out pgd() to swap out the page middle directory. The
address and end parameters tell the beginning and the end of the mem-
ory address to be scanned.

if (!count)

break;

Leave the loop and return if all the requested number of pages have been
completely unmapped.

address = (address + PGDIR_SIZE) & PGDIR_MASK;

pgdir++;

} while (address && (address < end));

return count;

Updates the address variable to the next page middle directory and
pgdir variable to the next offset within the page global directory. If it did
not reach the end of this VM area address space, scans the next page middle
directory.

294 CHAPTER 8. SWAPPING

8.3.5 Function swap out mm()

File: mm/vmscan.c

Prototype:

int swap_out_mm(struct mm_struct * mm,

int count, int * mmcounter,

zone_t * classzone)

This function scans all the VM areas from a process (mm parameter). It
returns how many pages were missing to get to the initial request amount
(count parameter). If return value is zero, it means that all the requested
pages were completely unmapped.

unsigned long address;

struct vm_area_struct* vma;

/*

* Find the proper vm-area after freezing the vma chain

* and ptes.

*/

spin_lock(&mm->page_table_lock);

address = mm->swap_address;

if (address == TASK_SIZE || swap_mm != mm) {

/* We raced: don’t count this mm but try again */

++*mmcounter;

goto out_unlock;

}

Checks for a race condition. Before getting the mm->page table lock,
another code path might have been faster and scanned all the address space
of this task (address == TASK SIZE condition).

It could also have been completely scanned and another mm struct is
the current one to be scanned (swap mm != mm condition). In either case,
increments the mmcounter variable in order to make the caller function to
try this process again (if unable to unmap the necessary pages checking other
processes first).

vma = find_vma(mm, address);

Finds the first VM area that ends after this address.

mm/vmscan.c

8.3. UNMAPPING PAGES FROM PROCESSES 295

if (vma) {

if (address < vma->vm_start)

address = vma->vm_start;

Sets address variable to the beginning of the found VM area if it does
not belong to a VM area.

for (;;) {

count = swap_out_vma(mm, vma, address, count,

classzone);

Calls swap out vma() to scan all the VM area address space.

vma = vma->vm_next;

if (!vma)

break;

if (!count)

goto out_unlock;

address = vma->vm_start;

}

}

Sets vma variable to the next VM area. Leave the while loop if there are
no VM areas to be scanned. If the number of pages to be unmapped has
been reached, leave the function since this VM area scan does not need to
be continued. Otherwise, set address to the beginning of the next VM area
and go on.

/* Indicate that we reached the end of address space */

mm->swap_address = TASK_SIZE;

All VM areas have been scanned, so sets the swap address of this pro-
cess’s mm struct to TASK SIZE to mark it as having been completely scanned.

out_unlock:

spin_unlock(&mm->page_table_lock);

return count;

Returns the number of pages missing to the initial amount of pages to be
completely unmapped.

296 CHAPTER 8. SWAPPING

8.3.6 Function swap out()

File: mm/vmscan.c

Prototype:

int swap_out(unsigned int priority,

unsigned int gfp_mask,

zone_t * classzone)

This function picks a task which will have its page table scanned. More
specifically, a mm struct – which is one per task – is chosen.

The return value is an int which means that the number of requested
pages (defined below) has been achieved (returns one) or not (returns zero).

int counter, nr_pages = SWAP_CLUSTER_MAX;

Tries to unmap nr pages pages from the process to be selected.

struct mm_struct *mm;

counter = mmlist_nr;

do {

if (unlikely(current->need_resched)) {

__set_current_state(TASK_RUNNING);

schedule();

}

Improves fairness by rescheduling the current task.

spin_lock(&mmlist_lock);

mm = swap_mm;

Sets mm variable to the latest mm struct which has been scanned (or is
being scanned).

while (mm->swap_address == TASK_SIZE ||

mm == &init_mm) {

No task has ever been scanned (mm == &init mm condition) or all the
address space of the selected task has been scanned (mm->swap address ==

TASK SIZE condition). In any of theses cases, tries to get a new mm struct

to scan.

mm->swap_address = 0;

mm/vmscan.c

8.3. UNMAPPING PAGES FROM PROCESSES 297

Makes this mm struct available again to be scanned.

mm = list_entry(mm->mmlist.next, struct mm_struct,

mmlist);

From the list of all active mm struct, mmlist, picks the next mm struct.

if (mm == swap_mm)

goto empty;

In the case the list is empty, returns.

swap_mm = mm;

}

/* Make sure the mm doesn’t disappear

when we drop the lock.. */

atomic_inc(&mm->mm_users);

spin_unlock(&mmlist_lock);

nr_pages = swap_out_mm(mm, nr_pages, &counter,

classzone);

Chosen an mm struct(), call swap out mm() function, which will “swap
out” the VM areas of this mm struct.

mmput(mm);

Once all the VM areas have been scanned, decrement the mm struct

counter, deleting if it is the last reference.

if (!nr_pages)

return 1;

No remaining pages to be unmapped? This function is sucessful, so it is
time to return.

} while (--counter >= 0);

return 0;

empty:

spin_unlock(&mmlist_lock);

return 0;

Unsuccesful since either the mmlist does not have other mm structs or
even after scanning all mmlist, it was unable to unmap the requested number
of pages.

298 CHAPTER 8. SWAPPING

8.4 Checking Memory Pressure

8.4.1 Function check classzone need balance()

File: mm/vmscan.c

Prototype:

int check_classzone_need_balance(zone_t * classzone)

The role of this function is to check if a zone (classzone parameter) and
all zones below it need to be balances, i.e, if the number of free pages is lower
than the higher watermark (classzone->pages high).

Its return value is an int, which indicates if it needs balance (one) or not
(zero).

zone_t * first_classzone;

first_classzone = classzone->zone_pgdat->node_zones;

The first classzone is set to the first zone on this NUMA (Non-
Uniform Memory Architecture) node.

while (classzone >= first_classzone) {

if (classzone->free_pages > classzone->pages_high)

return 0;

classzone--;

}

return 1;

If the zone (or any zone below it) does not need to be balanced, returns
zero. Otherwise checks until the first zone, returning one.

8.4.2 Function kswapd balance pgdat()

File: mm/vmscan.c

Prototype:

int kswapd_balance_pgdat(pg_data_t * pgdat)

This function balances every zone from an NUMA node (pgdat parame-
ter) that has the need balance flag set.

Its return value is an int, which will be one if any zone still need to
be balanced after it is tried to free pages and the pages could not be freed.
A zero return value means that all zones are balanced (either were already
balanced or have been balanced).

mm/vmscan.c
mm/vmscan.c

8.4. CHECKING MEMORY PRESSURE 299

int need_more_balance = 0, i;

zone_t * zone;

for (i = pgdat->nr_zones-1; i >= 0; i--) {

zone = pgdat->node_zones + i;

For every zone on this node.

if (unlikely(current->need_resched))

schedule();

Fairness is improved by relinquishing CPU if that is needed.

if (!zone->need_balance)

continue;

Zones that do not need to be balanced can be skipped. This flag
(need balance) is set in page alloc.c: alloc pages() whenever a zone
(on all nodes) has a number of free pages smaller than the low watermark
(zone->free pages).

if (!try_to_free_pages(zone, GFP_KSWAPD, 0)) {

zone->need_balance = 0;

__set_current_state(TASK_INTERRUPTIBLE);

schedule_timeout(HZ);

continue;

}

This zone needs to be balanced, so calls try to free pages() function.
If it could free its defined number of pages, zeroes need balance variable
and reschedule the current task.

if (check_classzone_need_balance(zone))

need_more_balance = 1;

else

zone->need_balance = 0;

}

It could not free the defined number of pages for this zone, so check if
this zone (or any below it) still needs to be balanced.

Note that zone->need balance has been set to 1 when the number of
free pages was lower than the low watermark. In order to return zero, the
check classzone need balance() function checks if the zone has a number
of free pages higher than the high watermark.

300 CHAPTER 8. SWAPPING

return need_more_balance;

If try to free pages() failed to free pages and any zone still needs to be
balanced, according to check classzone need balance() function, return
1. Otherwise, return 0.

8.4.3 Function kswapd balance()

File: mm/vmscan.c

Prototype:

void kswapd_balance(void)

Main function called from kswapd(), kswapd balance() simply balances
every node on the system, looping untill all node are balanced.

int need_more_balance;

pg_data_t * pgdat;

do {

need_more_balance = 0;

pgdat = pgdat_list;

do

need_more_balance |= kswapd_balance_pgdat(pgdat);

while ((pgdat = pgdat->node_next));

} while (need_more_balance);

8.4.4 Function kswapd can sleep pgdat()

File: mm/vmscan.c

Prototype:

int kswapd_can_sleep_pgdat(pg_data_t * pgdat)

Auxiliar function used by kswapd can sleep() to know if a certain node
(pgdat parameter) needs to be balanced. If any zone needs to be balanced,
the int return value will be zero, since kswapd cannot sleep. If no node
needs to be balanced, the return value will be one.

zone_t * zone;

int i;

for (i = pgdat->nr_zones-1; i >= 0; i--) {

mm/vmscan.c
mm/vmscan.c

8.4. CHECKING MEMORY PRESSURE 301

zone = pgdat->node_zones + i;

if (!zone->need_balance)

continue;

return 0;

}

return 1;

8.4.5 Function kswapd can sleep()

File: mm/vmscan.c

Prototype:

int kswapd_can_sleep(void)

This function is used by kswapd() to know if any node on the system
has to be balanced. If that happens, kswap() cannot sleep, thus the return
value (an int) will be zero. Otherwise, the return value will be one.

pg_data_t * pgdat;

pgdat = pgdat_list;

do {

if (kswapd_can_sleep_pgdat(pgdat))

continue;

return 0;

} while ((pgdat = pgdat->node_next));

return 1;

8.4.6 Function kswapd()

File: mm/vmscan.c

Prototype:

int kswapd(void *unused)

The kswap() function is run as a kernel thread. Its main role in the virtual
memory system is to perform the pageout process when there is need, what
happens usually when a zone is under a certain limit of free available memory
pages to be used for allocation. This process is done on a per-zone basis for
each node (if it is a NUMA system).

mm/vmscan.c
mm/vmscan.c

302 CHAPTER 8. SWAPPING

struct task_struct *tsk = current;

DECLARE_WAITQUEUE(wait, tsk);

A wait queue is declared to be added to the kswapd wait wait queue
header below. It will be used by alloc pages() to know if it can actually
wake up kswapd process.

daemonize();

strcpy(tsk->comm, "kswapd");

sigfillset(&tsk->blocked);

/*

* Tell the memory management that we’re a "memory allocator",

* and that if we need more memory we should get access to it

* regardless (see "__alloc_pages()"). "kswapd" should

* never get caught in the normal page freeing logic.

*

* (Kswapd normally doesn’t need memory anyway, but sometimes

* you need a small amount of memory in order to be able to

* page out something else, and this flag essentially protects

* us from recursively trying to free more memory as we’re

* trying to free the first piece of memory in the first place).

*/

tsk->flags |= PF_MEMALLOC;

/*

* Kswapd main loop.

*/

for (;;) {

__set_current_state(TASK_INTERRUPTIBLE);

Sets the task flag to be interruptible if kswap sleeps below.

add_wait_queue(&kswapd_wait, &wait);

Adding wait to the kswapd wait wait queue header turns kswapd wait

into an active wait queue. In the case any allocation happens from now on
and the number of free pages in any zone is under the minimum limit, kswap
will be able to be awaken (if it is sleeping).

mb();

8.4. CHECKING MEMORY PRESSURE 303

This stands for memory barrier and ensures that memory ordering will
happen, ie, that on a SMP system each CPU has the same view of the
memory.

if (kswapd_can_sleep())

schedule();

Here kswapd checks if any zone in any node needs to be balanced. A zone
will be marked “to be balanced” (ie. zone->need balance = 1) if when
page allocation happens, we have memory shortage, ie. the number of free
pages is lower than the minimum watermark for the respective zone. In the
case no zone has to be balanced, kswapd sleeps by calling schedule().

__set_current_state(TASK_RUNNING);

remove_wait_queue(&kswapd_wait, &wait);

After kswapd is waken up, its current task state is set to TASK RUNNING

and wait is removed from kswapd wait wait queue header. Thus,
alloc pages() will not be able to wake kswapd any longer, since that

kswapd will be already running trying to balance all zones under memory
shortage.

/*

* If we actually get into a low-memory situation,

* the processes needing more memory will wake us

* up on a more timely basis.

*/

kswapd_balance();

That’s the part of kswapd where it actually does its work. The
kswapd balance() tries to free enough pages for each zone which needs to
be balanced. Enough here stands for freeing a number of pages to make the
zone to end up having more free pages than its minimum watermark.

run_task_queue(&tq_disk);

}

Now it runs the task queue tq disk to perform disk related bottom half
activities. Since kswapd might have written some pages, it would be very
nice that they get flushed in order to be freed soon.

304 CHAPTER 8. SWAPPING

8.4.7 Function kswapd init()

File: mm/vmscan.c

Prototype:

static int __init kswapd_init(void)

This initialization function simply performs any necessary swap setup and
starts kswapd() function as a kernel thread.

printk("Starting kswapd\n");

swap_setup();

kernel_thread(kswapd, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL);

return 0;

8.5 Handling Swap Entries

8.5.1 Function scan swap map()

File: mm/swapfile.c

Prototype:

static inline int scan_swap_map(struct swap_info_struct *si)

This function scans the swap map of this swap device or partition (defined
in the si swap info struct parameter) checking for a free entry in this map.
If found, the offset within this swap map is returned. If not found, zero is
returned.

unsigned long offset;

/*

* We try to cluster swap pages by allocating them

* sequentially in swap. Once we’ve allocated

* SWAPFILE_CLUSTER pages this way, however, we resort to

* first-free allocation, starting a new cluster. This

* prevents us from scattering swap pages all over the entire

* swap partition, so that we reduce overall disk seek times

* between swap pages. -- sct */

if (si->cluster_nr) {

while (si->cluster_next <= si->highest_bit) {

offset = si->cluster_next++;

if (si->swap_map[offset])

mm/vmscan.c
mm/swapfile.c

8.5. HANDLING SWAP ENTRIES 305

continue;

si->cluster_nr--;

goto got_page;

}

}

First checks if there are any active clustering try going on. Always try to
allocate pages sequentially in the swap, like explained in the comment above.

Returns the available offset above si->cluster next (and below
si->highest bit), if any.

si->cluster_nr = SWAPFILE_CLUSTER;

Either no swap cluster has ever been started or the current one has
reached the defined number of pages, so starts (another) swap cluster by
setting the number of pages in the cluster (SWAPFILE CLUSTER).

/* try to find an empty (even not aligned) cluster. */

offset = si->lowest_bit;

check_next_cluster:

if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit)

{

int nr;

for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++)

if (si->swap_map[nr])

{

offset = nr+1;

goto check_next_cluster;

}

/* We found a completly empty cluster, so start

* using it.

*/

goto got_page;

}

In the above “if” block, tries to find a completely empty cluster, even if
it is not aligned with the previous one. If a completely free cluster is found,
returns the first offset within it. Otherwise, tries to scan the map for an
empty entry (see below).

/* No luck, so now go finegrined as usual. -Andrea */

for (offset = si->lowest_bit; offset <= si->highest_bit ;

306 CHAPTER 8. SWAPPING

offset++) {

if (si->swap_map[offset])

continue;

There are neither no active cluster, nor an empty cluster, so performs
the search checking every entry between the lowest (si->lowest bit) and
highest bit (si->highest bit), returning the first that is actually unused.

si->lowest_bit = offset+1;

got_page:

if (offset == si->lowest_bit)

si->lowest_bit++;

if (offset == si->highest_bit)

si->highest_bit--;

if (si->lowest_bit > si->highest_bit) {

si->lowest_bit = si->max;

si->highest_bit = 0;

}

Once an unused entry has been found, updates the lowest and highest
bits, i.e, the lowest unused entry and the highest unused entry.

si->swap_map[offset] = 1;

nr_swap_pages--;

si->cluster_next = offset+1;

return offset;

}

Also sets the swap map counter to one, turning this entry into an used
one and updates the number of reserved swap pages (nr swap pages). The
cluster next is set in order to try to cluster the next requested swap pages
(see the first “if” block of this function).

si->lowest_bit = si->max;

si->highest_bit = 0;

return 0;

No free entry has been found, thus updates the lowest and highest bits
to avoid unnecessary searches in the future, and return zero.

8.5. HANDLING SWAP ENTRIES 307

8.5.2 Function get swap page()

File: mm/swapfile.c

Prototype:

swp_entry_t get_swap_page(void)

This function checks swap types (ie, devices and partitions) for a free
entry. It returns a swp entry t type which will have the zero value if no
entry could be found, or a non-zero value which will be the swap address.

struct swap_info_struct * p;

unsigned long offset;

swp_entry_t entry;

int type, wrapped = 0;

entry.val = 0; /* Out of memory */

swap_list_lock();

type = swap_list.next;

if (type < 0)

goto out;

Picks the next swap type to be checked. When its value is below zero,
returns since there is no active swap.

if (nr_swap_pages <= 0)

goto out;

If the counter of available swap pages shows that there are no available
swap pages on any swap types (ie, devices and partitions).

while (1) {

p = &swap_info[type];

if ((p->flags & SWP_WRITEOK) == SWP_WRITEOK) {

Now checks if this swap type is writeable and only then keep searching.
Otherwise, tries the next swap type. A swap type present on the swap list
will not be writeable only if it is in the middle of a swapon or swapoff process.

swap_device_lock(p);

offset = scan_swap_map(p);

swap_device_unlock(p);

mm/swapfile.c

308 CHAPTER 8. SWAPPING

Locks the device and scans its swap map for an unused offset. Then
unlocks the device.

if (offset) {

entry = SWP_ENTRY(type,offset);

type = swap_info[type].next;

if (type < 0 ||

p->prio != swap_info[type].prio) {

swap_list.next = swap_list.head;

} else {

swap_list.next = type;

}

goto out;

}

A free entry has been found, so set which swap type will be looked up in
the next call and leave, returning the offset found. That is done since it is
desirable to distribute all the swap addresses equally among all swap types.

}

type = p->next;

if (!wrapped) {

if (type < 0 || p->prio != swap_info[type].prio) {

type = swap_list.head;

wrapped = 1;

}

} else

if (type < 0)

goto out; /* out of swap space */

}

No offset has been found in the chosen swap type or it is not writeable,
so try the next swap type. The “if” block above simply makes sure the
swap list isn’t checked twice. When the whole list is checked once and
nothing was found, it returns a zeroed swap entry.

out:

swap_list_unlock();

return entry;

8.5. HANDLING SWAP ENTRIES 309

8.5.3 Function swap info get()

File: mm/swapfile.c

Prototype:

static struct swap_info_struct * swap_info_get(swp_entry_t entry)

This function verifies if that is a valid entry, i.e, if it is set to a valid
device, valid offset, and locks the swap list and the device where this entry
is from. The return value is a pointer to the swap info struct type from
the swap type (got from entry parameter. It will be NULL if some assertion
failed or non-NULL otherwise

struct swap_info_struct * p;

unsigned long offset, type;

if (!entry.val)

goto out;

type = SWP_TYPE(entry);

if (type >= nr_swapfiles)

goto bad_nofile;

Checks if it is a non-NULL entry and if a valid swap type number.

p = & swap_info[type];

if (!(p->flags & SWP_USED))

goto bad_device;

Checks if that is an active swap type.

offset = SWP_OFFSET(entry);

if (offset >= p->max)

goto bad_offset;

Ensures that the offset number is valid.

if (!p->swap_map[offset])

goto bad_free;

Makes sure that it being used.

swap_list_lock();

if (p->prio > swap_info[swap_list.next].prio)

swap_list.next = type;

swap_device_lock(p);

mm/swapfile.c

310 CHAPTER 8. SWAPPING

Once the swap type and swap offset are valid, locks the swap list and also
the device. In the case the priority of this swap type is higher than the next
swap type to be looked up, updates the swap list with this very type.

return p;

Returns the pointer to the swap info struct of this swap type.

bad_free:

printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset,

entry.val);

goto out;

bad_offset:

printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset,

entry.val);

goto out;

bad_device:

printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file,

entry.val);

goto out;

bad_nofile:

printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file,

entry.val);

out:

return NULL;

8.5.4 Function swap info put()

File: mm/swapfile.c

Prototype:

static void swap_info_put(struct swap_info_struct * p)

The role of this function is the opposite of swap info get(): it unlocks
the swap device and the swap list.

swap_device_unlock(p);

swap_list_unlock();

mm/swapfile.c

8.5. HANDLING SWAP ENTRIES 311

8.5.5 Function swap entry free()

File: mm/swapfile.c

Prototype:

static int swap_entry_free(struct swap_info_struct *p,

unsigned long offset)

This function decreases the swap map counter, freeing the swap entry if
the counter gets down to zero.

int count = p->swap_map[offset];

if (count < SWAP_MAP_MAX) {

As soon as the swap map count gets to the SWAP MAP MAX value, it will
not get incremented nor decremented any longer. The reason behind this is
that incrementing will overflow the space reserved for it. On the other hand,
since it is unable to keep incrementing, decrementing cannot be done either
because the counter is not going to be accurate any longer. Therefore, it will
be only reclaimed in the swapoff process, so simply returns if that is the case.

count--;

p->swap_map[offset] = count;

In the case it has a counter that has not reached the SWAP MAP MAX value,
decrements the value and set it to the swap map.

if (!count) {

if (offset < p->lowest_bit)

p->lowest_bit = offset;

if (offset > p->highest_bit)

p->highest_bit = offset;

nr_swap_pages++;

}

}

return count;

If that was the last reference, updates the lowest and the highest free off-
sets (lowest bit and highest bit), if necessary, and increments the variable
that accounts the number of available swap pages.

mm/swapfile.c

312 CHAPTER 8. SWAPPING

8.5.6 Function swap free()

File: mm/swapfile.c

Prototype:

void swap_free(swp_entry_t entry)

This function is very simple: it locks the swap list and the swap device
of the entry parameter, calls the swap entry free() function, and unlocks
the list and the device.

struct swap_info_struct * p;

p = swap_info_get(entry);

if (p) {

swap_entry_free(p, SWP_OFFSET(entry));

swap_info_put(p);

}

8.5.7 Function swap duplicate()

File: mm/swapfile.c

Prototype:

int swap_duplicate(swp_entry_t entry)

Given an entry, swap duplicate() checks if it is a valid entry, increasing
its reference counter in this case. It returns an int value which will be one
(if sucess) or zero (if failure).

struct swap_info_struct * p;

unsigned long offset, type;

int result = 0;

type = SWP_TYPE(entry);

if (type >= nr_swapfiles)

goto bad_file;

Is that entry set to a valid swap type? If it isn’t, prints a warning message
(see bad file block below) and returns zero.

p = type + swap_info;

offset = SWP_OFFSET(entry);

swap_device_lock(p);

if (offset < p->max && p->swap_map[offset]) {

mm/swapfile.c
mm/swapfile.c

8.5. HANDLING SWAP ENTRIES 313

After locking the swap device, ensures that this entry is set a valid offset
and that this entry is used. If any of these conditions are false, returns zero.

if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {

p->swap_map[offset]++;

result = 1;

If the reference counter for this entry will not reach the SWAP MAP MAX

value when increased, simply increase it and set result to one.

} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {

if (swap_overflow++ < 5)

printk(KERN_WARNING "swap_dup: swap

entry overflow\n");

p->swap_map[offset] = SWAP_MAP_MAX;

result = 1;

}

}

For entries that will reach or have already reached the SWAP MAP MAX

value, just set the counter to SWAP MAP MAX and assign one to result.

swap_device_unlock(p);

out:

return result;

Unlocks the device and returns the result.

bad_file:

printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);

goto out;

8.5.8 Function swap count()

File: mm/swapfile.c

Prototype:

int swap_count(struct page *page)

Unused function, swap count() returns the reference counter of the swap
entry, if valid and used, to which a page (page parameter) is set.

mm/swapfile.c

314 CHAPTER 8. SWAPPING

struct swap_info_struct * p;

unsigned long offset, type;

swp_entry_t entry;

int retval = 0;

entry.val = page->index;

if (!entry.val)

goto bad_entry;

Null entry, so prints a warning message and returns.

type = SWP_TYPE(entry);

if (type >= nr_swapfiles)

goto bad_file;

Entry set to a invalid swap type, then prints a warning message and
returns.

p = type + swap_info;

offset = SWP_OFFSET(entry);

if (offset >= p->max)

goto bad_offset;

The offset of this entry is invalid, prints a warning message and returns.

if (!p->swap_map[offset])

goto bad_unused;

Unused entry? Prints a warning message and returns.

retval = p->swap_map[offset];

out:

return retval;

Valid swap type and a valid and used offset? Returns its counter from
swap map.

bad_entry:

printk(KERN_ERR "swap_count: null entry!\n");

goto out;

bad_file:

printk(KERN_ERR "swap_count: %s%08lx\n", Bad_file, entry.val);

8.6. UNUSING SWAP ENTRIES 315

goto out;

bad_offset:

printk(KERN_ERR "swap_count: %s%08lx\n", Bad_offset, entry.val);

goto out;

bad_unused:

printk(KERN_ERR "swap_count: %s%08lx\n", Unused_offset, entry.val);

goto out;

8.6 Unusing Swap Entries

Analogous to the Unmapping Pages from Processes section, unusing
checks the page tables from processes on the system. However, instead of
unmapping the page table entries, it checks if it is set to a swap address
located on the swap area (partition or swap file) being deactivated. In this
case, it is remapped to a memory page which holds the same data.

8.6.1 Function unuse pte()

File: mm/swapfile.c

Prototype:

static inline void unuse_pte(struct vm_area_struct * vma,

unsigned long address, pte_t *dir,

swp_entry_t entry, struct page* page)

This function checks if a page table entry (dir parameter) is set to the
swap entry it is being unused (entry parameter), setting this pte to the
memory page that holds the very same data as stored on the swap.

pte_t pte = *dir;

if (likely(pte_to_swp_entry(pte).val != entry.val))

return;

Returns if the page table entry is set to any value different from the swap
entry which is being unused.

if (unlikely(pte_none(pte) || pte_present(pte)))

return;

mm/swapfile.c

316 CHAPTER 8. SWAPPING

Seems redundant, but checks if the page table entry is NULL
(pte none()) or have an address which has the present bit on (i.e, not swap
entries). That is needed because pte to swp entry() is architecture depen-
dant and may change some lower bits, turning out that the first condition
end up being true for a page table entry not actually set to a swap entry.

get_page(page);

set_pte(dir, pte_mkold(mk_pte(page, vma->vm_page_prot)));

swap_free(entry);

++vma->vm_mm->rss;

The page table entry is set to the swap entry which is being unused, so
increments the reference count to this swap cache page (get page(), since
this process will point to this page; sets the pte to the page address, with the
protections of the vm area it belongs to; and decrements the swap counter
(swap free()).

8.6.2 Function unuse pmd()

File: mm/swapfile.c

Prototype:

static inline void unuse_pmd(struct vm_area_struct * vma,

pmd_t *dir, unsigned long address,

unsigned long size, unsigned long offset,

swp_entry_t entry, struct page* page)

This function checks every page table entry from a page middle directory
(dir parameter), trying to unuse them. Those page table entries set to
the swap entry which is being unused (entry parameter) will be set to the
memory page (page parameter) which holds the data stored on swap, thus
unusing the swap address.

pte_t * pte;

unsigned long end;

if (pmd_none(*dir))

return;

Does this page middle directory offset point to no page table? There is
nothing to do, so just returns.

mm/swapfile.c

8.6. UNUSING SWAP ENTRIES 317

if (pmd_bad(*dir)) {

pmd_ERROR(*dir);

pmd_clear(dir);

return;

}

Checks if the contents of this memory address points to a valid page
table. If it does not, prints an error message (pmd ERROR), clear this entry
and returns.

pte = pte_offset(dir, address);

offset += address & PMD_MASK;

address &= ~PMD_MASK;

end = address + size;

if (end > PMD_SIZE)

end = PMD_SIZE;

do {

unuse_pte(vma, offset+address-vma->vm_start, pte, entry,

page);

address += PAGE_SIZE;

pte++;

} while (address && (address < end));

For every page table entry, until it reaches the end of this page middle
directory or the end of the vm area (end stores the minimum between them),
calls unuse pte() which will check the page table entry data and will unuse
it if it’s the case.

8.6.3 Function unuse pgd()

File: mm/swapfile.c

Prototype:

static inline void unuse_pgd(struct vm_area_struct * vma,

pgd_t *dir, unsigned long address, unsigned long size,

swp_entry_t entry, struct page* page)

This function checks every page middle directory from a page global di-
rectory (dir parameter) within the vm area (vma, address and size), trying
to unuse all the page table entries from them. Those page table entries set
to the swap entry which is being unused (entry parameter) will be set to the
memory page (page parameter) which holds the data stored on swap, thus
unusing the swap address.

mm/swapfile.c

318 CHAPTER 8. SWAPPING

pmd_t * pmd;

unsigned long offset, end;

if (pgd_none(*dir))

return;

If this page global directory does not have a page middle directory, re-
turns.

if (pgd_bad(*dir)) {

pgd_ERROR(*dir);

pgd_clear(dir);

return;

}

Checks if the entry points to a bad page table. In this case, prints that
there is an error (pgd ERROR()) and clears this entry.

pmd = pmd_offset(dir, address);

offset = address & PGDIR_MASK;

address &= ~PGDIR_MASK;

end = address + size;

if (end > PGDIR_SIZE)

end = PGDIR_SIZE;

if (address >= end)

BUG();

do {

unuse_pmd(vma, pmd, address, end - address, offset,

entry, page);

address = (address + PMD_SIZE) & PMD_MASK;

pmd++;

} while (address && (address < end));

For every page middle directory, until it reaches the end of this page global
directory or the end of the vm area, calls unuse pmd() which will check the
page middle directory and unuse all the necessary page table entries.

8.6.4 Function unuse vma()

File: mm/swapfile.c

Prototype:

mm/swapfile.c

8.6. UNUSING SWAP ENTRIES 319

static void unuse_vma(struct vm_area_struct * vma,

pgd_t *pgdir, swp_entry_t entry,

struct page* page)

This function checks every page global directory from a vm area (vma
parameter), trying to unuse all the page table entries from them. Those page
table entries set to the swap entry which is being unused (entry parameter)
will be set to the memory page (page parameter) which holds the data stored
on swap, thus unusing the swap address.

unsigned long start = vma->vm_start, end = vma->vm_end;

if (start >= end)

BUG();

do {

unuse_pgd(vma, pgdir, start, end - start, entry, page);

start = (start + PGDIR_SIZE) & PGDIR_MASK;

pgdir++;

} while (start && (start < end));

The first page global directory is already passed as parameter (pgdir
parameter). So, for every page middle directory, until it reaches the end of
this vm area, call unuse pgd() which will check the page middle directory
and unuse all of its page table entries it if it’s the case.

8.6.5 Function unuse process()

File: mm/swapfile.c

Prototype:

static void unuse_process(struct mm_struct * mm,

swp_entry_t entry, struct page* page)

This function checks every vm area from a process (actually, its mm
struct, ie the mm parameter), trying to unuse all the page table entries from
them. Those page table entries set to the swap entry which is being unused
(entry parameter) will be set to the memory page (page parameter) which
holds the data stored on swap, thus unusing the swap address.

struct vm_area_struct* vma;

/*

mm/swapfile.c

320 CHAPTER 8. SWAPPING

* Go through process’ page directory.

*/

spin_lock(&mm->page_table_lock);

for (vma = mm->mmap; vma; vma = vma->vm_next) {

pgd_t * pgd = pgd_offset(mm, vma->vm_start);

unuse_vma(vma, pgd, entry, page);

}

spin_unlock(&mm->page_table_lock);

return;

From the mm struct list of vm areas, tries to unuse every vm area of this
process calling unuse vma() which will check the vm area and unuses all of
its page table entries it if it’s the case.

8.6.6 Function find next to unuse()

File: mm/swapfile.c

Prototype:

static int find_next_to_unuse(struct swap_info_struct *si,

int prev)

The find next to unuse() function checks for a swap map entry which
is used in order to be unused by the try to unuse() function.

int max = si->max;

int i = prev;

int count;

/*

* No need for swap_device_lock(si) here: we’re just looking

* for whether an entry is in use, not modifying it; false

* hits are okay, and sys_swapoff() has already prevented new

* allocations from this area (while holding swap_list_lock()).

*/

for (;;) {

if (++i >= max) {

if (!prev) {

i = 0;

break;

}

/*

mm/swapfile.c

8.6. UNUSING SWAP ENTRIES 321

* No entries in use at top of swap_map,

* loop back to start and recheck there.

*/

max = prev + 1;

prev = 0;

i = 1;

}

If the next value to be checked is greater than the maximum value of this
swap type, restart the check, but set the variables (prev) to make sure it
won’t restart more than once (ie, if all the swap entries are unused).

count = si->swap_map[i];

if (count && count != SWAP_MAP_BAD)

break;

}

Returns its offset if this swap map entry is used.

return i;

8.6.7 Function try to unuse()

File: mm/swapfile.c

Prototype:

static int try_to_unuse(unsigned int type)

Given a swap type (type), tries to unuse all the used swap entries by
checking all the page table entries from all processes until all the swap entries
have been sucessfully unused.

struct swap_info_struct * si = &swap_info[type];

struct mm_struct *start_mm;

unsigned short *swap_map;

unsigned short swcount;

struct page *page;

swp_entry_t entry;

int i = 0;

int retval = 0;

int reset_overflow = 0;

mm/swapfile.c

322 CHAPTER 8. SWAPPING

/*

* When searching mms for an entry, a good strategy is to

* start at the first mm we freed the previous entry from

* (though actually we don’t notice whether we or coincidence

* freed the entry). Initialize this start_mm with a hold.

*

* A simpler strategy would be to start at the last mm we

* freed the previous entry from; but that would take less

* advantage of mmlist ordering (now preserved by swap_out()),

* which clusters forked address spaces together, most recent

* child immediately after parent. If we race with dup_mmap(),

* we very much want to resolve parent before child, otherwise

* we may miss some entries: using last mm would invert that.

*/

start_mm = &init_mm;

atomic_inc(&init_mm.mm_users);

/*

* Keep on scanning until all entries have gone. Usually,

* one pass through swap_map is enough, but not necessarily:

* mmput() removes mm from mmlist before exit_mmap() and its

* zap_page_range(). That’s not too bad, those entries are

* on their way out, and handled faster there than here.

* do_munmap() behaves similarly, taking the range out of mm’s

* vma list before zap_page_range(). But unfortunately, when

* unmapping a part of a vma, it takes the whole out first,

* then reinserts what’s left after (might even reschedule if

* open() method called) - so swap entries may be invisible

* to swapoff for a while, then reappear - but that is rare.

*/

while ((i = find_next_to_unuse(si, i))) {

Tries to unuse every used swap entry of this swap type.

/*

* Get a page for the entry, using the existing swap

* cache page if there is one. Otherwise, get a clean

* page and read the swap into it.

*/

swap_map = &si->swap_map[i];

entry = SWP_ENTRY(type, i);

page = read_swap_cache_async(entry);

8.6. UNUSING SWAP ENTRIES 323

Comments are very clear. Note that all these actions are done in
read swap cache async() function. This page is read because in order to
unuse the swap address, since all the page table entries set to this swap entry
will be remapped to this page.

if (!page) {

/*

* Either swap_duplicate() failed because entry

* has been freed independently, and will not be

* reused since sys_swapoff() already disabled

* allocation from here, or alloc_page() failed.

*/

if (!*swap_map)

continue;

Checks if the counter for this entry is zero. In this case, it has been freed
concurrently with read swap cache async() call.

retval = -ENOMEM;

break;

}

The swap entry is still used, so problems allocating a new page in
read swap cache async(). Gives up and returns -ENOMEM.

/*

* Don’t hold on to start_mm if it looks like exiting.

*/

if (atomic_read(&start_mm->mm_users) == 1) {

mmput(start_mm);

start_mm = &init_mm;

atomic_inc(&init_mm.mm_users);

}

The process to which start mm belongs is exiting (this function holds the
last reference), therefore it is not worth looking up all its page tables here
since they will be looked up in the exit code path.

/*

* Wait for and lock page. When do_swap_page races with

* try_to_unuse, do_swap_page can handle the fault much

* faster than try_to_unuse can locate the entry. This

324 CHAPTER 8. SWAPPING

* apparently redundant "wait_on_page" lets try_to_unuse

* defer to do_swap_page in such a case - in some tests,

* do_swap_page and try_to_unuse repeatedly compete.

*/

wait_on_page(page);

lock_page(page);

Locks the page, even if it has to sleep for that. Check comments above
about the race between do swap page() and try to unuse().

/*

* Remove all references to entry, without blocking.

* Whenever we reach init_mm, there’s no address space

* to search, but use it as a reminder to search shmem.

*/

swcount = *swap_map;

if (swcount > 1) {

flush_page_to_ram(page);

if (start_mm == &init_mm)

shmem_unuse(entry, page);

else

unuse_process(start_mm, entry, page);

}

If the swap entry is still used, calls unuse process() to search all its
addressing space, trying to unuse its page table entries which are set to this
swap entry. In the case start mm is set to init mm (see comment above), it
checks the shmem unuse() since init mm does not have any address space to
be searched.

if (*swap_map > 1) {

int set_start_mm = (*swap_map >= swcount);

struct list_head *p = &start_mm->mmlist;

struct mm_struct *new_start_mm = start_mm;

struct mm_struct *mm;

spin_lock(&mmlist_lock);

while (*swap_map > 1 &&

(p = p->next) != &start_mm->mmlist) {

mm = list_entry(p, struct mm_struct, mmlist);

swcount = *swap_map;

8.6. UNUSING SWAP ENTRIES 325

if (mm == &init_mm) {

set_start_mm = 1;

shmem_unuse(entry, page);

} else

unuse_process(mm, entry, page);

if (set_start_mm && *swap_map < swcount) {

new_start_mm = mm;

set_start_mm = 0;

}

}

atomic_inc(&new_start_mm->mm_users);

spin_unlock(&mmlist_lock);

mmput(start_mm);

start_mm = new_start_mm;

}

The swap entry is still used after checking the start mm, so unuses each
active process on the system while the swap entry is still active.

After unusing the start mm, if the swap entry is used by the same or
greater number of users, changes the start mm for the first mm struct which
effectively helped decreasing the number of users.

/*

* How could swap count reach 0x7fff when the maximum

* pid is 0x7fff, and there’s no way to repeat a swap

* page within an mm (except in shmem, where it’s the

* shared object which takes the reference count)?

* We believe SWAP_MAP_MAX cannot occur in Linux 2.4.

*

* If that’s wrong, then we should worry more about

* exit_mmap() and do_munmap() cases described above:

* we might be resetting SWAP_MAP_MAX too early here.

* We know "Undead"s can happen, they’re okay, so don’t

* report them; but do report if we reset SWAP_MAP_MAX.

*/

if (*swap_map == SWAP_MAP_MAX) {

swap_list_lock();

swap_device_lock(si);

nr_swap_pages++;

*swap_map = 1;

swap_device_unlock(si);

326 CHAPTER 8. SWAPPING

swap_list_unlock();

reset_overflow = 1;

}

Now handle the cases where the swap map counter has reached the
SWAP MAP MAX counter. It seems it cannot occur in Linux 2.4, so it is more a
sanity check since the author(s) is(are) not sure that cannot actually happen.

/*

* If a reference remains (rare), we would like to leave

* the page in the swap cache; but try_to_swap_out could

* then re-duplicate the entry once we drop page lock,

* so we might loop indefinitely; also, that page could

* not be swapped out to other storage meanwhile. So:

* delete from cache even if there’s another reference,

* after ensuring that the data has been saved to disk -

* since if the reference remains (rarer), it will be

* read from disk into another page. Splitting into two

* pages would be incorrect if swap supported "shared

* private" pages, but they are handled by tmpfs files.

* Note shmem_unuse already deleted its from swap cache.

*/

if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {

rw_swap_page(WRITE, page);

lock_page(page);

}

if (PageSwapCache(page))

delete_from_swap_cache(page);

/*

* So we could skip searching mms once swap count went

* to 1, we did not mark any present ptes as dirty: must

* mark page dirty so try_to_swap_out will preserve it.

*/

SetPageDirty(page);

UnlockPage(page);

page_cache_release(page);

/*

* Make sure that we aren’t completely killing

* interactive performance. Interruptible check on

8.7. EXCLUSIVE SWAP PAGES 327

* signal_pending() would be nice, but changes the spec?

*/

if (current->need_resched)

schedule();

}

mmput(start_mm);

if (reset_overflow) {

printk(KERN_WARNING

"swapoff: cleared swap entry overflow\n");

swap_overflow = 0;

}

return retval;

8.7 Exclusive Swap Pages

8.7.1 Function exclusive swap page()

File: mm/swapfile.c

Prototype:

static int exclusive_swap_page(struct page *page)

This function checks if the swap address to which the page parameter
is set has only one reference (ie, checks the swap map counter). It returns
an int value, which will be one if the previous condition is true and zero
otherwise.

int retval = 0;

struct swap_info_struct * p;

swp_entry_t entry;

entry.val = page->index;

p = swap_info_get(entry);

Locks the swap list and the swap device of the entry the page is set to.

if (p) {

/* Is the only swap cache user the cache itself? */

if (p->swap_map[SWP_OFFSET(entry)] == 1) {

mm/swapfile.c

328 CHAPTER 8. SWAPPING

As the comment says, checks if this page is the only user of the swap
entry. It is said “swap cache” above because a reference to this swap entry
was got when the page was added to the swap cache.

/* Recheck the page count with the

pagecache lock held.. */

spin_lock(&pagecache_lock);

if (page_count(page) -

!!page->buffers == 2)

retval = 1;

spin_unlock(&pagecache_lock);

This function is called by can share swap page(), which checks the page
count without the pagecache lock, so it’s better recheck it with this lock held.
If the page count is still the one expected, return one.

}

swap_info_put(p);

Unlock the swap list and the swap device.

}

return retval;

8.7.2 Function can share swap page()

File: mm/swapfile.c

Prototype:

int can_share_swap_page(struct page *page)

This function returns an int value that means if this page can be shared
(return value: one) or not (return value: zero). Here “to be shared” means
that this page nor its swap entry are mapped by other process.

int retval = 0;

if (!PageLocked(page))

BUG();

switch (page_count(page)) {

Starts checking if it can be shared looking into its page counter.

mm/swapfile.c

8.7. EXCLUSIVE SWAP PAGES 329

case 3:

if (!page->buffers)

break;

/* Fallthrough */

A page with its counter set to 3 either is mapped by a process or have
buffers. If it doesn’t have buffers, it is surely mapped by a process, so returns
zero.

case 2:

if (!PageSwapCache(page))

break;

Checks if the page is in the swap cache. Mapped pages that are not in
the swap cache must return zero.

retval = exclusive_swap_page(page);

For cases where that is a swap cache page with counter 3 and
buffers or counter 2, check if that is an exclusive swap page by calling
exclusive swap page(). That function will check again the page counter
and also the swap count for the swap entry this page is set to. In the case
no process has mapped this page in the meanwhile and also the swap entry
is exclusive. The return value of this function will the value returned by
exclusive swap page() function.

break;

case 1:

if (PageReserved(page))

break;

retval = 1;

}

return retval;

Pages with counter 1 can be shared.

8.7.3 Function remove exclusive swap page()

File: mm/swapfile.c

Prototype:

int remove_exclusive_swap_page(struct page *page)

mm/swapfile.c

330 CHAPTER 8. SWAPPING

This function performs the same task as exclusive swap page(), check-
ing if the page nor its swap entry do not have users (includes being mapped
by processes), but also removes the page from swap cache if it is exclusive.
It returns an int value, which is one if the page was removed and zero
otherwise.

int retval;

struct swap_info_struct * p;

swp_entry_t entry;

if (!PageLocked(page))

BUG();

The page is supposed to be locked, so BUG() if it is unlocked.

if (!PageSwapCache(page))

return 0;

Since the page might have been removed from swap cache before the caller
got the lock on it, checks if the page is still in the swap cache. If it is not,
returns zero (it was not removed).

/* 2: us + cache */

if (page_count(page) - !!page->buffers != 2)

return 0;

Pages that have more than 2 users (plus eventual buffers) have users, so
they are not exclusive and cannot be remove. In this case, returns zero.

The page count is checked without the pagecache lock held, but will be
rechecked below with this lock held.

entry.val = page->index;

p = swap_info_get(entry);

if (!p)

return 0;

Locks the swap list and swap device of the swap entry this page is set
to. If that is an invalid entry (swap info get() returns NULL in this case),
returns zero.

/* Is the only swap cache user the cache itself? */

retval = 0;

if (p->swap_map[SWP_OFFSET(entry)] == 1) {

8.7. EXCLUSIVE SWAP PAGES 331

Verifies the number of users of this swap entry. If more than one, it is not
exclusive, so unlocks the swap device, the lists and returns zero (see below).

/* Recheck the page count with the pagecache

lock held.. */

spin_lock(&pagecache_lock);

if (page_count(page) - !!page->buffers == 2) {

__delete_from_swap_cache(page);

SetPageDirty(page);

retval = 1;

}

spin_unlock(&pagecache_lock);

}

swap_info_put(p);

For swap entries which the swap cache page is the only user, rechecks
the counter with pagecache lock held. If the page is still unmapped by
processes, deletes it from swap cache. Sets it dirty in order to be kept by the
swap out code.

if (retval) {

block_flushpage(page, 0);

swap_free(entry);

page_cache_release(page);

}

return retval;

For pages removed from swap cache, flushes them to the disk, drops their
reference on the swap entry and drops the reference got by page cache when
it was added to the swap cache.

8.7.4 Function free swap and cache()

File: mm/swapfile.c

Prototype:

void free_swap_and_cache(swp_entry_t entry)

Given a swap entry, this function decrements its reference counter (calling
swap entry free()). In the case the counter, after decreased, gets to one,
checks if this last reference belongs to a swap cache page, trying to free it
(only if it could be locked at once).

mm/swapfile.c

332 CHAPTER 8. SWAPPING

struct swap_info_struct * p;

struct page *page = NULL;

p = swap_info_get(entry);

Locks the swap list and the swap device of this entry, returning the pointer
to the swap device info structure.

if (p) {

if (swap_entry_free(p, SWP_OFFSET(entry)) == 1)

If a valid entry (p != NULL), decremens its reference counter calling
swap entry free().

page = find_trylock_page(&swapper_space,

entry.val);

If, after decrementing, there is only one reference on this swap entry,
checks if this reference is owned by a swap cache page, trying to lock it at
once (i.e, without sleeping to lock).

swap_info_put(p);

}

Unlocks the swap list and the swap device after freeing the swap entry.

if (page) {

page_cache_get(page);

/* Only cache user (+us), or swap space full? Free it! */

if (page_count(page) - !!page->buffers == 2 ||

vm_swap_full()) {

delete_from_swap_cache(page);

SetPageDirty(page);

}

UnlockPage(page);

page_cache_release(page);

}

The swap cache page has been found and could be locked at once, so
checks if the page does not have other users and frees it, removing it from
swap cache. Also it can be removed from swap cache if the swap is full.

8.8. SWAP AREAS 333

8.8 Swap Areas

8.8.1 Function sys swapoff()

File: mm/swapfile.c

Prototype:

asmlinkage long sys_swapoff(const char * specialfile)

This function tries to disable swap files or partitions, i.e, it performs
swapoff system call role. The return value is a long, which will return the
error code. If zero, no error has ocurred and the swap file or partition has
been succesfully disabled.

struct swap_info_struct * p = NULL;

unsigned short *swap_map;

struct nameidata nd;

int i, type, prev;

int err;

if (!capable(CAP_SYS_ADMIN))

return -EPERM;

Checks capabilities of this process, before going on. If they do not allow
performing this task, return -EPERM (not permitted) error.

err = user_path_walk(specialfile, &nd);

if (err)

goto out;

Given the swap file or partition name (specialfile parameter), tries
to get its namei information (nameidata). If not found, return the error
user path walk() found.

lock_kernel();

prev = -1;

swap_list_lock();

for (type = swap_list.head; type >= 0;

type = swap_info[type].next) {

p = swap_info + type;

if ((p->flags & SWP_WRITEOK) == SWP_WRITEOK) {

if (p->swap_file == nd.dentry)

break;

mm/swapfile.c

334 CHAPTER 8. SWAPPING

}

prev = type;

}

err = -EINVAL;

if (type < 0) {

swap_list_unlock();

goto out_dput;

}

Locks the kernel, the swap list and searches the swap type which is set
to this dentry (if any). If not found (type < 0), returns.

if (prev < 0) {

swap_list.head = p->next;

} else {

swap_info[prev].next = p->next;

}

if (type == swap_list.next) {

/* just pick something that’s safe... */

swap_list.next = swap_list.head;

}

Fixes the swap list (previous entry and swap list head and next fields).

nr_swap_pages -= p->pages;

total_swap_pages -= p->pages;

p->flags = SWP_USED;

swap_list_unlock();

unlock_kernel();

Updates the control variables: number of free swap pages
(nr swap pages) and total number of swap pages (total swap pages).
Also changes the flag from the SWP WRITEOK to SWP USED, so this swap type
cannot be used to assign new swap entries.

After these changes, unlocks the swap list and the kernel global lock.

err = try_to_unuse(type);

Calls try to unuse() which will try to unuse all the used swap entries
from this swap type.

8.8. SWAP AREAS 335

lock_kernel();

if (err) {

/* re-insert swap space back into swap_list */

swap_list_lock();

for (prev = -1, i = swap_list.head; i >= 0;

prev = i, i = swap_info[i].next)

if (p->prio >= swap_info[i].prio)

break;

p->next = i;

if (prev < 0)

swap_list.head = swap_list.next = p - swap_info;

else

swap_info[prev].next = p - swap_info;

nr_swap_pages += p->pages;

total_swap_pages += p->pages;

p->flags = SWP_WRITEOK;

swap_list_unlock();

goto out_dput;

}

If try to unuse() couldn’t unuse all the swap entries, undo all the pre-
vious changes and return.

if (p->swap_device)

blkdev_put(p->swap_file->d_inode->i_bdev, BDEV_SWAP);

This swap type is totally unused, so drop the reference on the block device
if that is a swap partition (not a swap file).

path_release(&nd);

Drops the reference on this dentry and vfsmnt got when this swap was
activated in sys swapon().

swap_list_lock();

swap_device_lock(p);

nd.mnt = p->swap_vfsmnt;

nd.dentry = p->swap_file;

p->swap_vfsmnt = NULL;

p->swap_file = NULL;

p->swap_device = 0;

p->max = 0;

336 CHAPTER 8. SWAPPING

swap_map = p->swap_map;

p->swap_map = NULL;

p->flags = 0;

swap_device_unlock(p);

swap_list_unlock();

vfree(swap_map);

err = 0;

With the swap list and device properly locked, zeroes the swap type
structure and free the swap map table. Also set the return value (err) to
zero.

out_dput:

unlock_kernel();

path_release(&nd);

out:

return err;

Unlocks the global kernel lock, drop the reference on the dentry and
vfsmnt got when the pathname was looked up and returns.

8.8.2 Function get swaparea info()

File: mm/swapfile.c

Prototype:

int get_swaparea_info(char *buf)

This function is used by the proc entry (/proc/swap) to display informa-
tion about the swap types. It returns an int value telling the lenght of the
output string.

char * page = (char *) __get_free_page(GFP_KERNEL);

struct swap_info_struct *ptr = swap_info;

int i, j, len = 0, usedswap;

if (!page)

return -ENOMEM;

Allocates a new page which will be used by d path below. If the page
cannot be allocated, returns -ENOMEM (out of memory) error.

len += sprintf(buf, "Filename\t\t\tType\t\tSize\tUsed\tPriority\n");

mm/swapfile.c

8.8. SWAP AREAS 337

Prints the header.

for (i = 0 ; i < nr_swapfiles ; i++, ptr++) {

For every swap type.
The ptr variable is initialized with the first swap type.

if ((ptr->flags & SWP_USED) && ptr->swap_map) {

Only swap types which are used (even if they are being unused in the
swapoff process) will be displayed. Also make sure that swap map is non-null
to avoid displaying swap types that are being “swapped on” in sys swapon.

char * path = d_path(ptr->swap_file, ptr->swap_vfsmnt,

page, PAGE_SIZE);

The d path function will write the path name (it can just a device name)
into the page. It will return to the path variable the address of the path
name start.

len += sprintf(buf + len, "%-31s ", path);

if (!ptr->swap_device)

len += sprintf(buf + len, "file\t\t");

else

len += sprintf(buf + len, "partition\t")

Prints the path name and whether it is a file or partition.

usedswap = 0;

for (j = 0; j < ptr->max; ++j)

switch (ptr->swap_map[j]) {

case SWAP_MAP_BAD:

case 0:

continue;

default:

usedswap++;

}

Accounts the number of swap entries from this type that are used. Since
the swap device isn’t held, it is not accurate.

338 CHAPTER 8. SWAPPING

len += sprintf(buf + len, "%d\t%d\t%d\n", ptr->pages << (PAGE_SHIFT - 10),

usedswap << (PAGE_SHIFT - 10), ptr->prio);

}

}

Prints information like the total number of pages available on this swap
type, the number of used pages (computed above) and the swap priority.

free_page((unsigned long) page);

return len;

Frees the page used as buffer and returns the length of the string printed
into the buffer (which will be displayed by the procfs).

8.8.3 Function is swap partition()

File: mm/swapfile.c

Prototype:

int is_swap_partition(kdev_t dev)

Given a device, checks if it is a swap partition. It returns an int value
(one if partition, zero otherwise).

struct swap_info_struct *ptr = swap_info;

int i;

for (i = 0 ; i < nr_swapfiles ; i++, ptr++) {

if (ptr->flags & SWP_USED)

if (ptr->swap_device == dev)

return 1;

}

return 0;

Simply looks up every swap type, checking if it is used and if it is set
to the device passed as parameter (only partition cases, since swap file cases
will have a null swap device).

mm/swapfile.c

8.8. SWAP AREAS 339

8.8.4 Function sys swapon()

File: mm/swapfile.c

Prototype:

asmlinkage long sys_swapon(const char * specialfile,

int swap_flags)

This function tries to activate swap files or partitions, ie it performs
swapon system call role. The return value is a long, which will return the
error code. If zero, no error has ocurred and the swap file or partition has
been succesfully enabled.

struct swap_info_struct * p;

struct nameidata nd;

struct inode * swap_inode;

unsigned int type;

int i, j, prev;

int error;

static int least_priority = 0;

union swap_header *swap_header = 0;

int swap_header_version;

int nr_good_pages = 0;

unsigned long maxpages = 1;

int swapfilesize;

struct block_device *bdev = NULL;

unsigned short *swap_map;

if (!capable(CAP_SYS_ADMIN))

return -EPERM;

Checks capabilities of this process, before going on. If they do not allow
performing this task, returns -EPERM (not permitted) error.

lock_kernel();

swap_list_lock();

p = swap_info;

for (type = 0 ; type < nr_swapfiles ; type++,p++)

if (!(p->flags & SWP_USED))

break;

Looks for the first swap type in swap info struct which is unused that
can be used by this new swap type. This search is protected by the swap list
lock.

mm/swapfile.c

340 CHAPTER 8. SWAPPING

error = -EPERM;

if (type >= MAX_SWAPFILES) {

swap_list_unlock();

goto out;

}

Returns -EPERM (operation not permitted) error if there is no swap type
available,

if (type >= nr_swapfiles)

nr_swapfiles = type+1;

Updates the variable that stores the last swap type used.

p->flags = SWP_USED;

p->swap_file = NULL;

p->swap_vfsmnt = NULL;

p->swap_device = 0;

p->swap_map = NULL;

p->lowest_bit = 0;

p->highest_bit = 0;

p->cluster_nr = 0;

p->sdev_lock = SPIN_LOCK_UNLOCKED;

p->next = -1;

Initializes the swap type.

if (swap_flags & SWAP_FLAG_PREFER) {

p->prio =

(swap_flags & SWAP_FLAG_PRIO_MASK)>>

SWAP_FLAG_PRIO_SHIFT;

} else {

p->prio = --least_priority;

}

The swap flags parameter indicates if the priority parameter has been
specified. If specified, sets the priority of this swap type to the value passed
in the swap flags parameter. If not specified, sets every new swapon with
a lower priority.

swap_list_unlock();

error = user_path_walk(specialfile, &nd);

if (error)

goto bad_swap_2;

8.8. SWAP AREAS 341

Gets the inode information (actually, the nameidata) for this file. If
it does not exist, back out all the previous changes and return the error
user path walk found.

p->swap_file = nd.dentry;

p->swap_vfsmnt = nd.mnt;

swap_inode = nd.dentry->d_inode;

error = -EINVAL;

Sets the file and vfs mount point of this swap type.

if (S_ISBLK(swap_inode->i_mode)) {

This dentry inode is a block device.

kdev_t dev = swap_inode->i_rdev;

struct block_device_operations *bdops;

devfs_handle_t de;

p->swap_device = dev;

Stores the device into the swap device.

set_blocksize(dev, PAGE_SIZE);

Sets the device block size to PAGE SIZE.

bd_acquire(swap_inode);

Gets a reference on the block device, if it exists. Or acquire a new block
device structure, setting the swap inode to this block device.

bdev = swap_inode->i_bdev;

de = devfs_get_handle_from_inode(swap_inode);

/* Increments module use count */

bdops = devfs_get_ops(de);

if (bdops) bdev->bd_op = bdops;

If using devfs, gets the handle, increments the modules usage counter and
defines the block device operations.

error = blkdev_get(bdev, FMODE_READ|FMODE_WRITE, 0,

BDEV_SWAP);

342 CHAPTER 8. SWAPPING

Opens the block device.

/*Decrement module use count now we’re safe*/

devfs_put_ops(de);

For systems with devfs only, it decrements the usage counter of this mod-
ule.

if (error)

goto bad_swap_2;

If the block device couldn’t be opened, backs out the changes and returns
-EINVAL (invalid argument) error.

set_blocksize(dev, PAGE_SIZE);

error = -ENODEV;

if (!dev || (blk_size[MAJOR(dev)] &&

!blk_size[MAJOR(dev)][MINOR(dev)]))

goto bad_swap;

swapfilesize = 0;

if (blk_size[MAJOR(dev)])

swapfilesize = blk_size[MAJOR(dev)][MINOR(dev)]

>> (PAGE_SHIFT - 10);

Checks if the device and block sizes are consistent, backing out the
changes and returning -EINVAL (invalid argument) if they are not. Also
computes the size of the swap into the swapfilesize variable if the size of
the block device is defined.

} else if (S_ISREG(swap_inode->i_mode))

swapfilesize = swap_inode->i_size >> PAGE_SHIFT;

The inode is a regular file, so simply sets the swapfilesize variable as
the file size (i size).

else

goto bad_swap;

Nor a partition nor a regular file, so backs out the previous changes and
returns -EINVAL (invalid argument) error.

8.8. SWAP AREAS 343

error = -EBUSY;

for (i = 0 ; i < nr_swapfiles ; i++) {

struct swap_info_struct *q = &swap_info[i];

if (i == type || !q->swap_file)

continue;

if (swap_inode->i_mapping ==

q->swap_file->d_inode->i_mapping)

goto bad_swap;

}

Makes sure this device has not been activated by other swap type. If
it has already been activated, backs out all the changes and return -EBUSY

(device or resource busy) error.

swap_header = (void *) __get_free_page(GFP_USER);

if (!swap_header) {

printk("Unable to start swapping: out of memory :-)\n");

error = -ENOMEM;

goto bad_swap;

}

Allocates a page that will hold the swap header (the first block of this
swap type). If that page cannot be allocated, backs out the previous changes
and returns -ENOMEM (out of memory) error.

lock_page(virt_to_page(swap_header));

rw_swap_page_nolock(READ, SWP_ENTRY(type,0), (char *) swap_header);

Reads the first block (block zero) of this swap type into the just allocated
page.

if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))

swap_header_version = 1;

else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))

swap_header_version = 2;

else {

printk("Unable to find swap-space signature\n");

error = -EINVAL;

goto bad_swap;

}

344 CHAPTER 8. SWAPPING

Checks the swap version and sets the swap header version variable. If
neither version 1 nor 2, backout the changes and return -EINVAL (invalid
argument) error.

switch (swap_header_version) {

case 1:

memset(((char *) swap_header)+PAGE_SIZE-10,0,10);

j = 0;

p->lowest_bit = 0;

p->highest_bit = 0;

for (i = 1 ; i < 8*PAGE_SIZE ; i++) {

if (test_bit(i,(char *) swap_header)) {

if (!p->lowest_bit)

p->lowest_bit = i;

p->highest_bit = i;

maxpages = i+1;

j++;

}

}

In the version 1 of swap space, the bad blocks were set in the swap header.
So, in order to initialize the lowest and highest bits, and the swap map as
well, those bits are tested. A bit one means that is a valid entry.

nr_good_pages = j;

p->swap_map = vmalloc(maxpages * sizeof(short));

if (!p->swap_map) {

error = -ENOMEM;

goto bad_swap;

}

Allocates the swap map. The swap map is allocated using vmalloc be-
cause the map might not be able to be allocated using kmalloc since it may
be huge. If the swap map cannot be allocated, backs out the changes and
returns -ENOMEM (out of memory) error.

for (i = 1 ; i < maxpages ; i++) {

if (test_bit(i,(char *) swap_header))

p->swap_map[i] = 0;

else

p->swap_map[i] = SWAP_MAP_BAD;

}

break;

8.8. SWAP AREAS 345

In the same way as the highest and lowest bits were set above, every
entry in the swap map is initialized testing the bits of the swap header.

case 2:

/* Check the swap header’s sub-version and the size of

the swap file and bad block lists */

if (swap_header->info.version != 1) {

printk(KERN_WARNING

"Unable to handle swap header

version %d\n",

swap_header->info.version);

error = -EINVAL;

goto bad_swap;

}

The kernel has support only for subversion 1 of swap header version 2.
If any other subversion, backs out the changes and returns -EINVAL (invalid
argument) error.

p->lowest_bit = 1;

maxpages = SWP_OFFSET(SWP_ENTRY(0,~0UL)) - 1;

if (maxpages > swap_header->info.last_page)

maxpages = swap_header->info.last_page;

p->highest_bit = maxpages - 1;

Sets the lowest (lowest bit and highest highest bit offsets for this swap
type based on the info.last page. Also sets an auxiliar variable that stores
the maximum number of pages.

error = -EINVAL;

if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)

goto bad_swap;

The version 2 of swap space has a maximum number of bad pages. Then
reads the number of bad pages from the header and checks if it is not greater
than the maximum allowed number of bad pages (MAX SWAP BADPAGES).

/* OK, set up the swap map and apply the bad block list */

if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {

error = -ENOMEM;

goto bad_swap;

}

error = 0;

memset(p->swap_map, 0, maxpages * sizeof(short));

346 CHAPTER 8. SWAPPING

Allocates the swap map. The swap map is allocated using vmalloc be-
cause the map might not be able to be allocated using kmalloc since it may
be huge. Also zeroes all the swap map using memset.

In the case the swap map cannot be allocated, backs out the previous
changes and returns -ENOMEM (out of memory) error.

for (i=0; i<swap_header->info.nr_badpages; i++) {

int page = swap_header->info.badpages[i];

if (page <= 0 ||

page >= swap_header->info.last_page)

error = -EINVAL;

else

p->swap_map[page] = SWAP_MAP_BAD;

}

For every index in the info.badpages array from the swap header, sets
that index as a bad block in the swap map. If any of those index are invalid
(not between 0 and info.last page), backs out the changes (below) and
return -EINVAL (invalid argument) error.

nr_good_pages = swap_header->info.last_page -

swap_header->info.nr_badpages -

1 /* header page */;

if (error)

goto bad_swap;

}

And sets the number of good pages.

if (swapfilesize && maxpages > swapfilesize) {

printk(KERN_WARNING

"Swap area shorter than signature indicates\n");

error = -EINVAL;

goto bad_swap;

}

From now on it is independent on the swap version. That is a sanity
check to know if the swap header is consistent with the swap file size.

if (!nr_good_pages) {

printk(KERN_WARNING "Empty swap-file\n");

error = -EINVAL;

goto bad_swap;

}

8.8. SWAP AREAS 347

Now checks if there are any good page. If there are no good pages, it is an
empty swap type, thus backs out the previous changes and return -EINVAL

(invalid argument) error.

p->swap_map[0] = SWAP_MAP_BAD;

The first block is the swap header, so mark it as a bad block.

swap_list_lock();

swap_device_lock(p);

p->max = maxpages;

p->flags = SWP_WRITEOK;

p->pages = nr_good_pages;

nr_swap_pages += nr_good_pages;

total_swap_pages += nr_good_pages;

With the swap list and swap device locked, finishes setting the swap
info structure. Also sets some control variables, like the free number of
swap pages (nr swap pages variable) and the total number of swap pages
(total swap pages).

printk(KERN_INFO "Adding Swap: %dk swap-space (priority %d)\n",

nr_good_pages\<\<(PAGE_SHIFT-10), p->prio);

Prints information about the new swap being added to the system.

/* insert swap space into swap_list: */

prev = -1;

for (i = swap_list.head; i >= 0; i = swap_info[i].next) {

if (p->prio >= swap_info[i].prio) {

break;

}

prev = i;

}

p->next = i;

if (prev < 0) {

swap_list.head = swap_list.next = p - swap_info;

} else {

swap_info[prev].next = p - swap_info;

}

swap_device_unlock(p);

swap_list_unlock();

348 CHAPTER 8. SWAPPING

Adds this swap type to the swap list, in priority ordering.

error = 0;

goto out;

bad_swap:

if (bdev)

blkdev_put(bdev, BDEV_SWAP);

bad_swap_2:

swap_list_lock();

swap_map = p->swap_map;

nd.mnt = p->swap_vfsmnt;

nd.dentry = p->swap_file;

p->swap_device = 0;

p->swap_file = NULL;

p->swap_vfsmnt = NULL;

p->swap_map = NULL;

p->flags = 0;

if (!(swap_flags & SWAP_FLAG_PREFER))

++least_priority;

swap_list_unlock();

if (swap_map)

vfree(swap_map);

path_release(&nd);

This is the block to back out if there is any error while trying to activate
this swap space.

out:

if (swap_header)

free_page((long) swap_header);

unlock_kernel();

return error;

Frees the page to be used as buffer for swap header and return.

8.8.5 Function si swapinfo()

File: mm/swapfile.c

Prototype:

void si_swapinfo(struct sysinfo *val)

mm/swapfile.c

8.8. SWAP AREAS 349

This function returns, in the val parameter, the number of free swap
pages and also the number of total swap pages. It is used by some functions
in the kernel, e.g. when displaying memory information in /proc/meminfo.

unsigned int i;

unsigned long nr_to_be_unused = 0;

swap_list_lock();

for (i = 0; i < nr_swapfiles; i++) {

unsigned int j;

if (swap_info[i].flags != SWP_USED)

continue;

Only look up the swap map of swap spaces that have SWP USED as it only
flags, since they are being deactivated in sys swapoff() or activated in
sys swapon(). Active swap spaces have their pages already accounted in
nr swap pages and total swap pages.

for (j = 0; j < swap_info[i].max; ++j) {

switch (swap_info[i].swap_map[j]) {

case 0:

case SWAP_MAP_BAD:

continue;

default:

nr_to_be_unused++;

}

}

}

For swap spaces that are being deactivated or activated, accounts the
used entries into the nr to be unused variable since they are not any longer
accounted in nr swap pages and total swap pages variables.

val->freeswap = nr_swap_pages + nr_to_be_unused;

val->totalswap = total_swap_pages + nr_to_be_unused;

swap_list_unlock();

And adds the used entries in the swap devices that are being deactivated
to the free number of swap pages and to the total number of swap pages. It
assumes that those pages are going to be sucessfully unused.

350 CHAPTER 8. SWAPPING

8.8.6 Function get swaphandle info()

File: mm/swapfile.c

Prototype:

void get_swaphandle_info(swp_entry_t entry, unsigned long *offset,

kdev_t *dev, struct inode **swapf)

Used by rw swap page base() IO function, get swaphandle info() re-
turns info to perform IO on swap pages. It returns the offset (in the offset

parameter) of a certain entry (entry parameter) and also checks if the entry
is located on a swap device, returning the device (in dev parameter), or the
swap file (in the swapf parameter) otherwise.

unsigned long type;

struct swap_info_struct *p;

type = SWP_TYPE(entry);

if (type >= nr_swapfiles) {

printk(KERN_ERR "rw_swap_page: %s%08lx\n",

Bad_file, entry.val);

return;

}

Checks if it is a valid type, printing a warning message and returning if
that is not the case.

p = &swap_info[type];

*offset = SWP_OFFSET(entry);

if (*offset >= p->max && *offset != 0) {

printk(KERN_ERR "rw_swap_page: %s%08lx\n",

Bad_offset, entry.val);

return;

}

Now check if it is a valid offset. It does not allow the offset to be zero,
since that is the offset of the swap header. Prints a warning message and
returns if an invalid offset.

if (p->swap_map && !p->swap_map[*offset]) {

printk(KERN_ERR "rw_swap_page: %s%08lx\n",

Unused_offset, entry.val);

return;

}

mm/swapfile.c

8.8. SWAP AREAS 351

Sanity check to know if it is an used entry. Prints a warning message and
returns when it is unused.

if (!(p->flags & SWP_USED)) {

printk(KERN_ERR "rw_swap_page: %s%08lx\n",

Unused_file, entry.val);

return;

}

To conclude, checks if the swap type is used. Also prints a warning
message and returns if that is the case.

if (p->swap_device) {

*dev = p->swap_device;

Sets dev to the swap device of this swap type, if any, and returns.

} else if (p->swap_file) {

*swapf = p->swap_file->d_inode;

There is no swap device, so checks for a swap file (swap file), assigns
the inode of this swap file to swapf and returns.

} else {

printk(KERN_ERR "rw_swap_page: no swap file or device\n");

}

return;

An error ocurred: no swap file nor swap device. Prints a warning message
then and return.

8.8.7 Function valid swaphandles()

File: mm/swapfile.c

Prototype:

int valid_swaphandles(swp_entry_t entry, unsigned long *offset)

This function returns the initial offset of the swap cluster to the read
ahead (in the offset parameter) and the number of swap entries that must
be read from disk (return value, which is an int).

mm/swapfile.c

352 CHAPTER 8. SWAPPING

int ret = 0, i = 1 \<\< page_cluster;

unsigned long toff;

struct swap_info_struct *swapdev = SWP_TYPE(entry) + swap_info;

if (!page_cluster) /* no readahead */

return 0;

If page cluster is zero, it means that swap pages shouldn’t be grouped,
so no readahead must be performed.

toff = (SWP_OFFSET(entry) >> page_cluster) \<\< page_cluster;

Finds the offset of the first entry in the cluster this entry is located in.

if (!toff) /* first page is swap header */

toff++, i--;

If the first entry in the cluster is the first offset of this swap type, skips
it, and decrements the cluster size.

*offset = toff;

Set the offset to the first offset in the cluster (or second, if the first was
the first block on the swap).

swap_device_lock(swapdev);

do {

/* Don’t read-ahead past the end of the swap area */

if (toff >= swapdev->max)

break;

/* Don’t read in free or bad pages */

if (!swapdev->swap_map[toff])

break;

if (swapdev->swap_map[toff] == SWAP_MAP_BAD)

break;

toff++;

ret++;

} while (--i);

swap_device_unlock(swapdev);

return ret;

Computes the number of pages that will be read ahead. Only contiguous,
used and good pages up to the end of the swap area will be read. If any of
these conditions happen to be false, returns the number computed so far.

8.9. SWAP CACHE 353

8.9 Swap Cache

8.9.1 Function swap writepage()

File: mm/swap_state.c

Prototype:

static int swap_writepage(struct page *page)

This function is used to write a swap page (page parameter). It is called
from shrink cache() and always return zero.

if (remove_exclusive_swap_page(page)) {

UnlockPage(page);

return 0;

}

If that an exclusive swap page (ie, the swap page is the only user of this
swap entry), tries to remove it from swap cache, since it doesn’t need to be
actually written to the swap.

rw_swap_page(WRITE, page);

return 0;

That’s not an exclusive swap page, so simple call rw swap page() to write
it.

8.9.2 Function add to swap cache()

File: mm/swap_state.c

Prototype:

int add_to_swap_cache(struct page *page, swp_entry_t entry)

This function adds a page (page parameter) to the swap cache, setting
the page to the swap entry passed as parameter (entry). It returns an int
value that corresponds to the error, so a zero value means that the page has
been added succesfully.

if (page->mapping)

BUG();

Only pages that are not in the page cache are eligible to be added to the
swap cache (which is part of page cache).

mm/swap_state.c
mm/swap_state.c

354 CHAPTER 8. SWAPPING

if (!swap_duplicate(entry)) {

INC_CACHE_INFO(noent_race);

return -ENOENT;

}

Gets a reference on this swap entry. If swap duplicate() fails to do that,
probably a race condition happened. In this case, returns -ENOENT (invalid
entry) error.

if (add_to_page_cache_unique(page, &swapper_space, entry.val,

page_hash(&swapper_space, entry.val)) != 0) {

Calls add to page cache unique() to add the page to the page cache.
The called function is supposed to be race condition proof. A non-zero return
value means that it has raced, so a swap page set to this entry has been added
before it could make it. In this case, returns (see below).

swap_free(entry);

INC_CACHE_INFO(exist_race);

return -EEXIST;

}

The page couldn’t be added to the page cache because another swap page
was added to the page cache before that, so drops the reference on the swap
entry (swap free()) and returns -EEXIST error.

if (!PageLocked(page))

BUG();

Makes sure the page was locked when added to page cache and it remains
locked.

if (!PageSwapCache(page))

BUG();

Verifies if the page mapping is set to swapper space, as expected.

INC_CACHE_INFO(add_total);

return 0;

The page has been sucessfully added to the page cache, then return zero
as error value.

8.9. SWAP CACHE 355

8.9.3 Function delete from swap cache()

File: mm/swap_state.c

Prototype:

void __delete_from_swap_cache(struct page *page)

This function removes the page from swap cache, but does not drop the
reference on the swap entry nor the reference page cache has got on this page.
The caller must hold the pagecache lock spinlock.

if (!PageLocked(page))

BUG();

if (!PageSwapCache(page))

BUG();

Checks if the page is locked and actually in swap cache.

ClearPageDirty(page);

__remove_inode_page(page);

INC_CACHE_INFO(del_total);

Clears the dirty bit and removes the page from page cache
(remove inode page()).

8.9.4 Function delete from swap cache()

File: mm/swap_state.c

Prototype:

void delete_from_swap_cache(struct page *page)

This function flushes the swap cache page and deletes it from the swap
cache, dropping the reference on the swap entry and also the reference page
cache has got on this page.

swp_entry_t entry;

if (!PageLocked(page))

BUG();

Makes sure this page is locked.

block_flushpage(page, 0);

mm/swap_state.c
mm/swap_state.c

356 CHAPTER 8. SWAPPING

Flushes the page to the disk.

entry.val = page->index;

Gets the entry value before it gets deleted from swap cache, since the
reference on this swap entry will be only dropped later.

spin_lock(&pagecache_lock);

__delete_from_swap_cache(page);

spin_unlock(&pagecache_lock);

Deletes the page from swap cache.

swap_free(entry);

page_cache_release(page);

Drops the reference on the swap entry and the reference that page cache
has got on the page.

8.9.5 Function free page and swap cache()

File: mm/swap_state.c

Prototype:

void free_page_and_swap_cache(struct page *page)

The main role of this function is to drop a reference on a page. It will
also, if it is a swap cache page and it is able to lock the page at once, check
if that’s an exclusive swap page, remove it from swap cache and drop its
reference on the swap entry.

/*

* If we are the only user, then try to free up the swap cache.

*

* Its ok to check for PageSwapCache without the page lock

* here because we are going to recheck again inside

* exclusive_swap_page() _with_ the lock.

* - Marcelo

*/

if (PageSwapCache(page) && !TryLockPage(page)) {

remove_exclusive_swap_page(page);

UnlockPage(page);

}

page_cache_release(page);

mm/swap_state.c

8.9. SWAP CACHE 357

8.9.6 Function lookup swap cache()

File: mm/swap_state.c

Prototype:

struct page * lookup_swap_cache(swp_entry_t entry)

This function looks up a certain swap entry (entry parameter) in the
swap cache, getting a reference on the page if found. It returns a pointer
to the found page, if any, or null, otherwise.

struct page *found;

found = find_get_page(&swapper_space, entry.val);

Searches for this entry in the page cache. Pages from swap cache are
mapped to swapper space, so it must simply look for pages mapped to this
address space and to the wanted entry.

/*

* Unsafe to assert PageSwapCache and mapping on page found:

* if SMP nothing prevents swapoff from deleting this page from

* the swap cache at this moment. find_lock_page would prevent

* that, but no need to change: we _have_ got the right page.

*/

INC_CACHE_INFO(find_total);

if (found)

INC_CACHE_INFO(find_success);

return found;

8.9.7 Function read swap cache async()

File: mm/swap_state.c

Prototype:

struct page * read_swap_cache_async(swp_entry_t entry)

This function tries to find an entry in the swap cache. If not found, it
allocates a page, adds it to the swap cache and reads the data into it from
disk. A pointer to this page (found or added to the swap cache) is returned
to the system.

mm/swap_state.c
mm/swap_state.c

358 CHAPTER 8. SWAPPING

struct page *found_page, *new_page = NULL;

int err;

do {

/*

* First check the swap cache. Since this is normally

* called after lookup_swap_cache() failed, re-calling

* that would confuse statistics: use find_get_page()

* directly.

*/

found_page = find_get_page(&swapper_space, entry.val);

if (found_page)

break;

Searches the page cache for this entry. If found, returns the found page
(found page), freeing the page that might have been allocated (see below).

/*

* Get a new page to read into from swap.

*/

if (!new_page) {

new_page = alloc_page(GFP_HIGHUSER);

if (!new_page)

break; /* Out of memory */

}

The page has not been found in page cache, hence allocates a new page if it
has not yet been allocated. If it couldn’t be allocated, return the found page,
i.e. a NULL pointer.

/*

* Associate the page with swap entry in the swap cache.

* May fail (-ENOENT) if swap entry has been freed since

* our caller observed it. May fail (-EEXIST) if there

* is already a page associated with this entry in the

* swap cache: added by a racing read_swap_cache_async,

* or by try_to_swap_out (or shmem_writepage) re-using

* the just freed swap entry for an existing page.

*/

err = add_to_swap_cache(new_page, entry);

if (!err) {

8.9. SWAP CACHE 359

/*

* Initiate read into locked page and return.

*/

rw_swap_page(READ, new_page);

return new_page;

}

Adds the new page to the swap cache for this entry. If it could be sucess-
fully added to the swap cache (!err), reads the data from disk and returns
it. If it couldn’t be added to the swap cache, this swap entry might have
been freed in the meanwhile (-ENOENT) or it may have been found in the
page cache (-EEXIST). In these cases, do not read the page from disk since
it it not in the swap cache.

} while (err != -ENOENT);

If the swap entry has not been freed (err == -EEXIST), tries again this
whole procedure. Otherwise (err == -ENOENT) gives up trying, frees the
allocated page and returns the found page, i.e. a NULL pointer.

if (new_page)

page_cache_release(new_page);

return found_page;

360 CHAPTER 8. SWAPPING

Appendix A

Intel Architecture

Work under progress Most of the information that will be here will be
from Intel Arch Manuals, so I will write it last. Anyone willing to take this
up ?

This chapter is a refresher on how memory is addressed in the intel x86
processor. The concepts dealt here are also valid for other architectures also.
The x86 processor supports two modes of addressing:

• Segmentation

• Paging

A.1 Segmentation

This addressing mode is the default and cannot be disabled. In real mode
the address is specified by loading the segment register by a 16 bit value,
to specify the base, and a general purpose register is loaded with the 16
bit offset. In protected mode, the segment register is loaded by a segment
selector. The format of the segment selector is described in appendix . The
most signinficant 13 bits are used as an index into the global descriptor table
whose base address is contained in the GDTR register.

A.2 Paging

This addressing mode is enabled by setting the most significant bit (PG) of
the CR0 register.

361

362 APPENDIX A. INTEL ARCHITECTURE

Appendix B

Miscellaneous

B.1 Page Flags

This section will describe the bit values the page→flags can have. The are
all declared in include/linux/mm.h. This is a description of each bit.

PG locked
This bit is set when the page must be locked in memory for disk I/O.
When I/O starts, this bit is set and released when it completes

PG error
If an error occurs during disk I/O, this bit is set

PG referenced
If a page is mapped and it is referenced through the mapping,index hash
table, this bit is set. It’s used during page replacement for moving the
page around the LRU lists

PG uptodate
When a page is read from disk without error, this bit will be set.

PG dirty
This indicates if a page needs to be flushed to disk. When a page is
written to that is backed by disk, it is not flushed immediately, this bit
is needed to ensure a dirty page is not freed before it’s written out

PG unused
This bit is literally unused

PG lru
If a page is on either the active list or the inactive list, this bit will be
set.

363

include/linux/mm.h

364 APPENDIX B. MISCELLANEOUS

PG active
This bit is set if a page is on the active list LRU and cleared when it
is removed. It marks a page as been hot.

PG slab
This will flag a page as been used by the slab allocator

PG skip
Used by some architectures so skip over parts of the address space.

PG highmem
Pages in high memory cannot be mapped permanently by the ker-
nel. Pages that are in high memory are flagged with this bit during
mem init

PG checked
Only used by the EXT2 file-system

PG arch 1
Quoting directly from the code. PG arch 1 is an architecture specific
page state bit. The generic code guarantees that this bit is cleared for a
page when it first is entered into the page cache

PG reserved
This is set for pages that can never be swapped out. It is set during init
until the machine as booted up. Later it is used to flag empty pages or
ones that do not even exist

PG launder
This bit is important only to the page replacement policy. When
the VM wants to swap out a page, it will set this bit and call the
writepage function. When scanning, it encounters a page with this bit
and PG locked set, it will wait for the I/O to complete

There are helper macros provided to help set, test and clear the bits.

Bit name Set Test Clear

PG locked LockPage PageLocked UnlockPage
PG error SetPageError PageError ClearPageError
PG referenced SetPageReferenced PageReferenced ClearPageReferenced
PG uptodate SetPageUptodate PageUptodate ClearPageUptodate

B.1. PAGE FLAGS 365

PG dirty SetPageDirty PageDirty ClearPageDirty
PG unused n/a n/a n/a
PG lru TestSetPageLRU PageLRU TestClearPageLRU
PG active SetPageActive PageActive ClearPageActive
PG slab PageSetSlab PageSlab PageClearSlab
PG skip n/a n/a n/a
PG highmem n/a PageHighMem n/a
PG checked SetPageChecked PageChecked n/a
PG arch 1 n/a n/a n/a
PG reserved SetPageReserved PageReserved ClearPageReserved
PG launder SetPageLaunder PageLaunder ClearPageLaunder

366 APPENDIX B. MISCELLANEOUS

B.2 GFP Flags

A persistent concept through out the whole VM are the GFP (Get Free
Page) flags. They determine how the allocator and kswapd may behave for
the allocation and freeing of pages. For example, an interrupt handler may
not sleep so it will not have the GFP WAIT flag set, as this flag indicates the
caller may sleep. There are three sets of GFP flags, all defined in include/

linux/mm.h.

The first set are zone modifiers. These flags indicate that the caller must
try to allocate from a particular zone. The reader will note that there is no
zone modifier for ZONE NORMAL. This is because the zone modifier flag
is used as an offset within an array and 0 implicitly means allocate from
ZONE NORMAL.

GFP DMA Allocate from ZONE DMA if possible
GFP HIGHMEM Allocate from ZONE HIGHMEM if possible

GFP DMA Alias for GFP DMA

The next flags are action modifiers. They change the behavior of the VM
and what the calling process may do.

GFP WAIT
Indicates that the caller is not high priority and can sleep or reschedule

GFP HIGH
Used by a high priority or kernel process. Kernel 2.2.x used it to
determine if a process could access emergency pools of memory. In
2.4.x kernels, it does not appear to be used

GFP IO
Indicates that the caller can perform low level IO. In 2.4.x, the main
affect this has is determining if try to free buffers() can flush buffers
or not. It is used by at least one journelled file-system

GFP HIGHIO
Determines that IO can be performed on pages mapped in high memory.
Only used in try to free buffers()

GFP FS
Indicates if the caller can make calls to the file-system layer. This is
used when the caller is file-system related, the buffer cache for instance,
and wants to avoid recursively calling itself

include/linux/mm.h
include/linux/mm.h

B.2. GFP FLAGS 367

These flags on their own are too primitive to be easily used. Knowing
what the correct combinations for each instance is unwieldy and leads to
buggy programming so a few high level combinations are defined to make
life simpler. For clarity the GFP is removed from the below combinations.
So, the GFP HIGH flag will read as HIGH below. The combinations and
their flags are

GFP ATOMIC HIGH
GFP NOIO HIGH | WAIT
GFP NOHIGHIO HIGH | WAIT | IO
GFP NOFS HIGH | WAIT | IO | HIGHIO
GFP KERNEL HIGH | WAIT | IO | HIGHIO | FS
GFP NFS HIGH | WAIT | IO | HIGHIO | FS
GFP USER WAIT | IO | HIGHIO | FS
GFP HIGHUSER WAIT | IO | HIGHIO | FS | HIGHMEM
GFP KSWAPD WAIT | IO | HIGHIO | FS

To help understand this, take GFP ATOMIC as an example. It has only
the GFP HIGH flag set. This means it is high priority, use emergency pools
(if they existed) but will not sleep, perform IO or access the file-system. This
would be the case for an interrupt handler for example. The following is a
description of where the combined flags are used.

GFP ATOMIC
This flag is used whenever the caller cannot sleep and must be serviced
if at all possible. Any interrupt handler that requires memory must
use this flag to avoid sleeping or IO. Many subsystems during init will
use this system such as buffer init and inode init

GFP NOIO
This is used by callers who are already performing an IO related func-
tion. For example, when the loop back device is trying to get a page
for a buffer head, it uses this flag to make sure it will not perform some
action that would result in more IO. In fact, it appears this flag was
introduced specifically to fix a loopback device deadlock

GFP NOHIGHIO
This is only used in one place, in alloc bounce page() during the
creating of a bounce buffer for IO

GFP NOFS
This is only used by the buffer cache and file-systems to make sure they
do not recursively call themselves by accident

368 APPENDIX B. MISCELLANEOUS

GFP KERNEL
The most liberal of the combined flags. It indicates that the caller is
free to do whatever it pleases. Strictly speaking the difference between
this flag and GFP USER is that this could use emergency pools of
pages but that is a no-op on 2.4.x kernels

GFP NFS
This flag is defunct. In the 2.0.x series, this flag determined what the
reserved page size was. Normally 20 free pages were reserved. If this
flag was set, only 5 would be reserved. Now it is not treated differently
anywhere anymore

GFP USER
Another flag of historical significance. In the 2.2.x series, an allocation
was given a LOW, MEDIUM or HIGH priority. If memory was tight,
a request with GFP USER (low) would fail where as the others would
keep trying. Now it has no significance and is not treated any different
to GFP KERNEL

GFP HIGHUSER
This flag indicates that the allocator should allocate from
ZONE HIGHMEM if possible. It is used when the page is allocated on
behalf of a user process

GFP KSWAPD
More historical significance. In reality this is not treated any different
to GFP KERNEL

GNU Free Documentation
License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written
document “free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

369

370 GNU FREE DOCUMENTATION LICENSE

Applicability and Definitions

This License applies to any manual or other work that contains a notice
placed by the copyright holder saying it can be distributed under the terms
of this License. The “Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general pub-
lic, whose contents can be viewed and edited directly and straightforwardly
with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety
of formats suitable for input to text formatters. A copy made in an other-
wise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LATEX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML de-
signed for human modification. Opaque formats include PostScript, PDF,
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML produced by some

371

word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

Verbatim Copying

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are re-
produced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

Copying in Quantity

If you publish printed copies of the Document numbering more than 100,
and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document number-
ing more than 100, you must either include a machine-readable Transparent

372 GNU FREE DOCUMENTATION LICENSE

copy along with each Opaque copy, or state in or with each Opaque copy a
publicly-accessible computer-network location containing a complete Trans-
parent copy of the Document, free of added material, which the general
network-using public has access to download anonymously at no charge us-
ing public-standard network protocols. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition
to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give them
a chance to provide you with an updated version of the Document.

Modifications

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

• List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has less than five).

• State on the Title page the name of the publisher of the Modified
Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

373

• Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

• Include an unaltered copy of this License.

• Preserve the section entitled “History”, and its title, and add to it an
item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section
entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous
sentence.

• Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.

• In any section entitled “Acknowledgements” or “Dedications”, preserve
the section’s title, and preserve in the section all the substance and tone
of each of the contributor acknowledgements and/or dedications given
therein.

• Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

• Delete any section entitled “Endorsements”. Such a section may not
be included in the Modified Version.

• Do not retitle any existing section as “Endorsements” or to conflict in
title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections

374 GNU FREE DOCUMENTATION LICENSE

as invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties – for
example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and
one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same
entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and mul-
tiple identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History”
in the various original documents, forming one section entitled “History”;
likewise combine any sections entitled “Acknowledgements”, and any sec-
tions entitled “Dedications”. You must delete all sections entitled “Endorse-
ments.”

375

Collections of Documents

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a
compilation is called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on account of
their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one quarter of the entire
aggregate, the Document’s Cover Texts may be placed on covers that sur-
round only the Document within the aggregate. Otherwise they must appear
on covers around the whole aggregate.

Translation

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License provided that you also include the original
English version of this License. In case of a disagreement between the trans-
lation and the original English version of this License, the original English
version will prevail.

376 GNU FREE DOCUMENTATION LICENSE

Termination

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License ”or
any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.

Bibliography

[1] Daniel P. Bovet & Marco Cesati. Understanding the Linux Kernel.
O’Reilly, 2001, ISBN 81-7366-233-9.

[2] Joe Knapka. Outline of the Linux Memory Management System. http:
//home.earthlink.net/~jknapka/linux-mm/vmoutline.html.

[3] Linux MM. Website and mailing list for linux-mm. http://www.

linux-mm.org. Has a lot of links to memory management documen-
tation.

[4] Intel Architecture. Intel Pentium III Processor Manuals. http://www.
intel.com/design/PentiumIII/manuals/index.htm.

[5] Martin Devera. Functional Callgraph of the Linux VM. http://luxik.
cdi.cz/~devik/mm.htm. Contains a patch for gcc which was used to
create the call-graph poster provided with this doc.

[6] Mel Gorman. Documentation Patches for the linux kernel. http:

//www.csn.ul.ie/~mel/projects/vm/. Along with documenting the
linux VM, commented a lot of code which are available as patches. One
of the main sources for the material in this document.

[7] Jeff Bonwick. The Slab Allocator: An Object Caching Kernel
Memory Allocator. http://www.usenix.org/publications/library/
proceedings/bos94/bonwick.html. This paper presents a comprehen-
sive design overview of the SunOS 5.4 kernel memory allocator.

[8] Ralf Brown. Interrupt List. http://www.ctyme.com/rbrown.htm. This
list contains every documented and undocumented interrupt call known.

377

http://home.earthlink.net/~jknapka/linux-mm/vmoutline.html
http://home.earthlink.net/~jknapka/linux-mm/vmoutline.html
http://www.linux-mm.org
http://www.linux-mm.org
http://www.intel.com/design/PentiumIII/manuals/index.htm
http://www.intel.com/design/PentiumIII/manuals/index.htm
http://luxik.cdi.cz/~devik/mm.htm
http://luxik.cdi.cz/~devik/mm.htm
http://www.csn.ul.ie/~mel/projects/vm/
http://www.csn.ul.ie/~mel/projects/vm/
http://www.usenix.org/publications/library/proceedings/bos94/bonwick.html
http://www.usenix.org/publications/library/proceedings/bos94/bonwick.html
http://www.ctyme.com/rbrown.htm

Index

Symbols
GFP DMA, 366
GFP FS, 366
GFP HIGH, 366
GFP HIGHIO, 366
GFP HIGHMEM, 366
GFP IO, 366
GFP WAIT, 366
alloc bootmem(), 27
alloc bootmem core(), 27
alloc pages(), 71
fix to virt(), 41
free block, 138
free pages ok(), 65
kmem cache alloc, 124
kmem cache free, 133, 134
kmem slab destroy, 105
set fixmap(), 42

A
arg end, 175
arg start, 175

B
balance classzone(), 79
bdata, 21
brk, 175
Buddy System, 61
build zonelists(), 54

C
cache sizes t, 152
cc data, 141
cc entry, 141

ccupdate t, 146
CFGS OFF SLAB, 87
CFLGS OPTIMIZE, 87
CHECK PAGE, 133
clock searchp, 110
cluster next, 269
cluster nr, 269
colouroff, 116
context, 175
contig page data, 22
cpu vm mask, 175
cpucache, 140
CREATE MASK, 87

D
def flags, 175
DFLGS GROWN, 87
do ccupdate local, 147
drain cpu caches, 148
dumpable, 175

E
enable all cpucaches, 142
enable cpucache, 142, 143
end code, 174
end data, 174
env end, 175
env start, 175
expand(), 78

F
FIXADDR SIZE, 41
FIXADDR START, 41
FIXADDR TOP, 41

378

INDEX 379

Fixmaps, 40
fixrange init(), 43
flags, 268
free all bootmem(), 32
free all bootmem core(), 32
free area, 46
free area init(), 48
free area init core(), 48
free block, 137
free bootmem(), 25
free bootmem core(), 25
free list, 62
free pages, 46

G
g cpucache up, 142
GET PAGE CACHE, 117
GET PAGE SLAB, 117
GFP (Get Free Page), 366
GFP ATOMIC, 367
GFP DMA, 366
GFP HIGHUSER, 367
GFP KERNEL, 367
GFP KSWAPD, 367
GFP NFS, 367
GFP NOFS, 367
GFP NOHIGHIO, 367
GFP NOIO, 367
GFP USER, 367

H
highest bit, 269
highmem pages, 12

K
kfree, 154
kmalloc, 153
kmap init(), 44
kmem bufctl t, 138
kmem cache alloc batch, 131
kmem cache alloc one tail, 129
kmem cache create, 89

kmem cache destroy, 107
kmem cache estimate, 95
kmem cache free, 132
kmem cache free one, 135
kmem cache grow, 98, 99
kmem cache init, 150
kmem cache init objs, 121
kmem cache reap, 111
kmem cache shrink, 103
kmem cache shrink locked, 104
kmem cache slabmgmt, 118
kmem find general cachep, 120
kmem freepages, 152
kmem getpages, 151
kmem tune cpucache, 142, 144

L
last offset, 23
last pos, 23
locked vm, 175
lowest bit, 269

M
map, 62
MAP ANONYMOUS, 191
map count, 174
MAP DENYWRITE, 191
MAP EXECUTABLE, 191
MAP FIXED, 191
MAP GROWSDOWN, 191
MAP LOCKED, 191
MAP NORESERVE, 191
MAP SHARED, 191
max, 269
MAX NONPAE PFN, 11
MAXMEM, 11
MAXMEM PFN, 11
mem init(), 55
mem map, 50
mm count, 174
mm rb, 174

380 INDEX

mm users, 174
mmap, 174
mmap cache, 174
mmap sem, 174
mmlist, 174

N
need balance, 46
next, 269
node boot start, 22
node bootmem map, 23
node id, 22
node low pfn, 23
node mem map, 21
node next, 22
node size, 21
node start mapnr, 21
node start paddr, 21
node zonelists, 21
node zones, 21
nr zones, 21

P
PAGE OFFSET, 4
page table lock, 174
pages, 269
pages high, 46
pages low, 46
pages min, 46
pagetable init(), 36
paging init(), 34
PFN DOWN, 10
PFN PHYS, 11
PFN UP, 10
PG active, 364
PG arch 1, 364
PG checked, 364
PG dirty, 363
PG error, 363
PG highmem, 364
PG launder, 364

PG locked, 363
PG lru, 363
PG referenced, 363
PG reserved, 364
PG skip, 364
PG slab, 364
PG unused, 363
PG uptodate, 363
pgd, 174
prio, 269
PROT EXEC, 190
PROT NONE, 190
PROT READ, 190
PROT WRITE, 190

R
REAP SCANLEN, 110
reserve bootmem(), 26
reserve bootmem core(), 26
rmqueue(), 75
rss, 175

S
s mem, 116
sdev lock, 268
SET PAGE CACHE, 117
SET PAGE SLAB, 117
size-X cache, 152
size-X(DMA) cache, 152
SLAB ATOMIC, 124
slab bufctl, 138
SLAB DMA, 125
SLAB KERNEL, 125
SLAB LEVEL MASK, 125
SLAB NFS, 125
SLAB NO GROW, 125
SLAB NOFS, 124
SLAB NOHIGHIO, 124
SLAB NOIO, 124
SLAB USER, 124
smp function all cpus, 147

INDEX 381

start brk, 175
start code, 174
start data, 174
start stack, 175
struct bootmem data, 22
struct free area struct, 62
struct page, 47
struct pglist data, 20
struct zone struct, 45
swap address, 175
swap device, 268
swap file, 268
swap map, 269
swap vfsmnt, 268
swapper pg dir, 6
SWP ENTRY(type, offset), 267
SWP OFFSET(x), 267
SWP TYPE(x), 267

T
total vm, 175
try to free buffers(), 366

V
val, 267
valid addr bitmap, 21
vm end, 176
vm file, 177
vm flags, 176
vm mm, 176
vm next, 176
vm next share, 177
vm ops, 177
vm page prot, 176
vm pgoff, 177
vm pprev share, 177
vm private data, 177
vm raend, 177
vm rb, 177
vm start, 176
VMALLOC RESERVE, 11

W
wait table, 46
wait table shift, 46
wait table size, 46

Z
ZONE DMA, 44
ZONE HIGHMEM, 45
zone mem map, 47
ZONE NORMAL, 45
zone pgdat, 47
zone start mapnr, 47
zone start paddr, 47

	Preface
	Initialization
	Memory Detection
	Method E820H
	Method E801H
	Method 88H

	Provisional GDT
	Activating Paging
	Significance of PAGE_OFFSET
	Provisional Kernel Page Tables
	Paging

	Final GDT
	Memory Detection Revisited
	Function setup_arch()
	Function setup_memory_region()
	Function sanitize_e820_map()
	Function copy_e820_map()
	Function add_memory_region()
	Function print_memory_map()

	NUMA
	struct pglist_data

	Bootmem Allocator
	struct bootmem_data
	Function init_bootmem()
	Function free_bootmem()
	Function reserve_bootmem()
	Function __alloc_bootmem()
	Function free_all_bootmem()

	Page Table Setup
	Function paging_init()
	Function pagetable_init()
	Fixmaps
	Macro __fix_to_virt()
	Function __set_fixmap()
	Function fixrange_init()

	Function kmap_init()

	Memory Zones
	Structures
	struct zone_struct
	struct page

	Function free_area_init()
	Function build_zonelists()
	Function mem_init()

	Initialization of Slab Allocator
	Function kmem_cache_init()
	Function kmem_cache_sizes_init()

	Physical Memory Allocation
	Zone Allocator
	Buddy System
	struct free_area_struct
	Example
	Allocation
	De-Allocation

	Function __free_pages_ok()
	Function __alloc_pages()
	Function rmqueue()
	Function expand()
	Function balance_classzone()

	Slab Allocator
	Caches
	Cache Static Flags
	Cache Dynamic Flags
	Cache Colouring
	Creating a Cache
	Function kmem_cache_create()

	Calculating the Number of Objects on a Slab
	Function kmem_cache_estimate()

	Growing a Cache
	Function kmem_cache_grow()

	Shrinking Caches
	Function kmem_cache_shrink()
	Function kmem_cache_shrink_locked()
	Function __kmem_slab_destroy()

	Destroying Caches
	Function kmem_cache_destroy()

	Cache Reaping
	Function kmem_cache_reap()

	Slabs
	Storing the Slab Descriptor
	Function kmem_cache_slabmgmt()
	Function kmem_find_general_cachep()

	Objects
	Initializing Objects
	Function kmem_cache_init_objs()

	Allocating Objects
	Function __kmem_cache_alloc()
	Allocation on UP
	Allocation on SMP

	Macro kmem_cache_alloc_one()
	Function kmem_cache_alloc_one_tail()
	Function kmem_cache_alloc_batch()

	Object Freeing
	Function kmem_cache_free()
	Function __kmem_cache_free()
	Function __kmem_cache_free()
	Function kmem_cache_free_one()
	Function free_block()
	Function __free_block()

	Tracking Free Objects
	kmem_bufctl_t
	Initialising the kmem_bufctl_t Array
	Finding the Next Free Object
	Updating kmem_bufctl_t

	Per-CPU Object Cache
	Describing the Per-CPU Object Cache
	Adding/Removing Objects from the Per-CPU Cache
	Enabling Per-CPU Caches
	Function enable_all_cpucaches()
	Function enable_cpucache()
	Function kmem_tune_cpucache()

	Updating Per-CPU Information
	Function smp_function_all_cpus()
	Function do_ccupdate_local()

	Draining a Per-CPU Cache
	Function drain_cpu_caches()

	Slab Allocator Initialization
	Initializing cache_cache
	Function kmem_cache_init()

	Interfacing with the Buddy Allocator
	Function kmem_getpages()
	Function kmem_freepages()

	Sizes Cache
	kmalloc
	kfree

	Non-Contiguous Memory Allocation
	Structures
	struct vm_struct

	Allocation
	Function vmalloc()
	Function __vmalloc()
	Function get_vm_area()
	Function vmalloc_area_pages()
	Function alloc_area_pmd()
	Function alloc_area_pte()

	De-Allocation
	Function vfree()
	Function vmfree_area_pages()
	Function free_area_pmd()
	Function free_area_pte()

	Read/Write
	Function vread()
	Function vwrite()

	Process Virtual Memory Management
	Structures
	struct mm_struct
	struct vm_area_struct

	Creating a Process Address Space
	Function copy_mm()
	Function dup_mmap()

	Deleting a Process Address Space
	Function exit_mm()
	Function mmput()
	Function exit_mmap()

	Allocating a Memory Region
	Function do_mmap()
	Function do_mmap_pgoff()
	Function get_unmapped_area()
	Function arch_get_unmapped_area()
	Function find_vma_prepare()
	Function vm_enough_memory()

	De-Allocating a Memory Region
	Function sys_munmap()
	Function do_munmap()

	Modifying Heap
	Function sys_brk()
	Function do_brk()

	Unclassified
	Function __remove_shared_vm_struct()
	Function remove_shared_vm_struct()
	Function lock_vma_mappings()
	Function unlock_vma_mappings()
	Function calc_vm_flags()
	Function __vma_link_list()
	Function __vma_link_rb()
	Function __vma_link_file()
	Function __vma_link()
	Function vma_link()
	Function vma_merge()
	Function find_vma()
	Function find_vma_prev()
	Function find_extend_vma()
	Function unmap_fixup()
	Function free_pgtables()
	Function build_mmap_rb()
	Function __insert_vm_struct()
	Function insert_vm_struct()

	Demand Paging
	Function copy_cow_page()
	Function __free_pte()
	Function free_one_pmd()
	Function free_one_pgd()
	Function check_pgt_cache()
	Function clear_page_tables()
	Function copy_page_range()
	Function forget_pte()
	Function zap_pte_range()
	Function zap_pmd_range()
	Function zap_page_range()
	Function follow_page()
	Function get_page_map()
	Function get_user_pages()
	Function map_user_kiobuf()
	Function mark_dirty_kiobuf()
	Function unmap_kiobuf()
	Function lock_kiovec()
	Function unlock_kiovec()
	Function zeromap_pte_range()
	Function zeromap_pmd_range()
	Function zeromap_page_range()
	Function remap_pte_range()
	Function remap_pmd_range()
	Function remap_page_range()
	Function establish_pte()
	Function break_cow()
	Function do_wp_page()
	Function vmtruncate_list()
	Function vmtruncate()
	Function swapin_readahead()
	Function do_swap_page()
	Function do_anonymous_page()
	Function do_no_page()
	Function handle_pte_fault()
	Function handle_mm_fault()
	Function __pmd_alloc()
	Function pte_alloc()
	Function make_pages_present()
	Function vmalloc_to_page()

	The Page Cache
	The Buffer Cache

	Swapping
	Structures
	swp_entry_t
	struct swap_info_struct

	Freeing Pages from Caches
	LRU lists
	Function shrink_cache()
	Function refill_inactive()
	Function shrink_caches()
	Function try_to_free_pages()

	Unmapping Pages from Processes
	Function try_to_swap_out()
	Function swap_out_pmd()
	Function swap_out_pgd()
	Function swap_out_vma()
	Function swap_out_mm()
	Function swap_out()

	Checking Memory Pressure
	Function check_classzone_need_balance()
	Function kswapd_balance_pgdat()
	Function kswapd_balance()
	Function kswapd_can_sleep_pgdat()
	Function kswapd_can_sleep()
	Function kswapd()
	Function kswapd_init()

	Handling Swap Entries
	Function scan_swap_map()
	Function get_swap_page()
	Function swap_info_get()
	Function swap_info_put()
	Function swap_entry_free()
	Function swap_free()
	Function swap_duplicate()
	Function swap_count()

	Unusing Swap Entries
	Function unuse_pte()
	Function unuse_pmd()
	Function unuse_pgd()
	Function unuse_vma()
	Function unuse_process()
	Function find_next_to_unuse()
	Function try_to_unuse()

	Exclusive Swap Pages
	Function exclusive_swap_page()
	Function can_share_swap_page()
	Function remove_exclusive_swap_page()
	Function free_swap_and_cache()

	Swap Areas
	Function sys_swapoff()
	Function get_swaparea_info()
	Function is_swap_partition()
	Function sys_swapon()
	Function si_swapinfo()
	Function get_swaphandle_info()
	Function valid_swaphandles()

	Swap Cache
	Function swap_writepage()
	Function add_to_swap_cache()
	Function __delete_from_swap_cache()
	Function delete_from_swap_cache()
	Function free_page_and_swap_cache()
	Function lookup_swap_cache()
	Function read_swap_cache_async()

	Intel Architecture
	Segmentation
	Paging

	Miscellaneous
	Page Flags
	GFP Flags

	GNU Free Documentation License
	Bibliography
	Index

