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Abstract

Topsy is a portable micro-kernel operating system designed for teaching purposes at the ETH Z¨urich.
Goal of this project was the design and implementation of a TCP/IP Stack for Topsy. The whole
networking infrastructure in Topsy had to be built.

Simplicity and readability were considered very important and therefore a modular, user-space pro-
tocol stack was designed. Efficiency was however preserved, with the use of techniques such as
zero-copy operation and fast buffers. Each protocol module was kept completely independent of each
other, with the use of “attributes” and a common configuration library which contains the dependence
between the modules. The integration of new protocol modules should be very simple.

Each module was implemented with a Topsy thread. Although it is elegant to reuse Topsy’s threading
facilities, it is also too much complicated and expensive for this scope (pre-emptive multitasking). A
simple user-space cooperative multitasking facility could be implemented in the future to enhance the
performance, which is already good.

This report presents the project, analyses it and also serves as documentation for the implementation.



Zusammenfassung

Topsy ist eine portables Microkernel Betriebssystem, das am ETH Z¨urich für den Unterricht entwor-
fen wurde. Ziel dieser Projekt war eine TCP/IP Stack f¨ur Topsy zu entwickeln. Die ganze Netzwerk
Protokolle Infrastruktur in Topsy musste implementiert werden.

Wichtige gewünschte Eigenschaften waren Einfachheit und Lesbarkeit. Darum war eine user-space
modulär Architektur gew¨ahlt, ohne aber zu viel an performance zu verlieren. Gute performance war
erreicht mit “zero-copy” und schnelle buffers. Um den Design elegant zu machen, alle Modulen
sind komplett unabh¨angig voneinander. Diese Unabh¨angigkeit ist erzielt mit “Attributen” und eine
externe kleine “configuration library” der alle Abh¨angigkeiten enth¨alt, so dass die Integration von
neue Protokoll Modulen sehr einfach ist.

Jede Modul ist eine Topsy thread, so dass die Implementation elegant und einfach ist. Topsy threads
sind aber zu kompliziert und ineffizient f¨ur diese Applikation (pre-emptive multitasking). Eine einfa-
che “leightweight user-space cooperative multitasking” k¨onnte in Zukunft implementiert werden um
den Protokoll Stack schneller zu machen, der aber schon ziemlich effizient und klein ist.

Diese Bericht pr¨asentiert und analysiert den Projekt. Es ist auch die Dokumentation f¨ur die Imple-
mentation.
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Chapter 1

Introduction

1.1 Project Goal

Topsy is a portable micro-kernel operating system designed at the ETH Z¨urich. Goal of this project
was the design and implementation of a TCP/IP Stack for the Topsy operating system. The whole
networking infrastructure in Topsy was to be designed.

1.2 Design Principles

Because it was designed as an educational software, very important properties of Topsy are it’s sim-
plicity and clean implementation which should also be very important for the TCP/IP Stack. Further
documentation on Topsy can be found in [2] or athttp://www.tik.ee.ethz.ch/˜topsy .

The TCP/IP Stack for Topsy was therefore designed with the following priorities in mind:

1. Readability and simplicity

2. Flexibility

3. Efficiency

Since in Topsy there is nothing to support networking protocols and devices, the full networking
implementation, independent of TCP/IP, was developed. This was the major part of the work, and
not the TCP/IP stack itself. We will however refer to the whole work as “TCP/IP Stack”, since that
protocol stack is the one which we are interested in.

To support the the readability and flexibility goal without having significant efficiency penalties, sev-
eral techniques were used, as described in chapter 2.

1.3 Development environment

Topsy was developed initially to be run on a IDT MIPS R3052E based board. A simulator for this
platform (the “MipsSimulator”) was also written in java to simplify the development process of Topsy.
Topsy without networking protocols and the MipsSimulator were already implemented and did con-
stitute the basis for this project to build upon.
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Prefix Files Description

net NetInit.c NetMain.c Generic/public functions (netInit)

netbuf NetBuf.c Network Memory Buffers

netattr NetAttr.c Network Attributes

netcfg NetConfig.c Configuration and classification of Packets

netmod NetModules.c Network Modules Interface

netdbg NetDebug.c Debugging Facility

netif NetIface.c Network Interfaces configuration/initialisation

nettap Ethertap (directory) Ethertap module

neteth Ethernet (directory) Ethernet module

netip IP (directory) IPv4 module

netarp ARP (directory) ARP module

netudp UDP (directory) UDP module

neticmp ICMP (directory) ICMP module

Table 1.1: Code Overview

Since on these embedded devices there isn’t any network card, a simulated network device was added
to the MipsSimulator: the “Ethertap” device, which is described in detail in appendix C.

The MipsSimulator was run on a Linux machine so that an interoperability testing was possible. It
was also easier to debug the interface output, because on Linux there are already very good tools for
this purpose such astcpdump .

To make the evaluation of the performance and the debugging easier, a symbolic tracer and a profiler
were added to the MipsSimulator. See appendix C for further information.

1.4 Code Overview

The TCP/IP stack will be in future distributed as a “plug-in”, therefore it was not fully integrated into
the main Topsy source distribution. Apart from small modifications in theUser/Makefile and the
kernel drivers, all the networking implementation resides in theNet directory.

To improve readability, a very strict prefixes convention was used for each subsystem of the net-
working implementation. The table 1.1 is a summary of all the prefixes used and the corresponding
sources.

1.5 Acknowledgements

I would like to thank the TIK department at the ETH Z¨urich for giving me the chance to do this
project, especially George Fankhauser, my project advisor. Without his suggestions and help all of
this wouldn’t have been possible. Thank you.



Chapter 2

Architecture

The architecture of the networking support in Topsy is now presented. This chapter should serve as
a rapid overview of the major design decisions, which are important to understand before going into
the implementation details.

2.1 User Space

The User-space or Kernel-space placement of non-core parts of an operating system is one of such
problems which might never have a definitive answer and which are the cause of many “holy” wars
on Usenet.

Since the main goal of Topsy is readability and not speed, a User-space implementation, which is
certainly better understandable and easier to implement, was written.

TCP/IP
Stack

Ethertap driver
Kernel

User

User program
TOPSY

Figure 2.1: TCP Stack in User Space

2.2 Modularity

The fastest networking implementation is done with a ‘vertical’ (monolithic) approach, where the
full processing of networking devices and protocols is done in one pass with efficient optimisations.
However, such implementations are very complicated and inflexible. Implementing new protocols in
such a framework is difficult.
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A “modular” approach makes the implementation more flexible. Modules implement specific tasks of
the protocol stack and should be the most independent to each other as possible. In such a framework,
the implementation of new protocols is much easier.

Therefore a modular design was implemented, as described in chapter 5.

NetBufs

Config

Module

1

User

Thread

Manager

Module

Module Module

Module Module

2

3 4

5 6

User Interface

User

Kernel

Figure 2.2: Modules architecture

2.3 Granularity

How small should a module be?

As we will see later, an overhead is added for each module to module interaction. That is, for effi-
ciency reasons we don’t want that a packet has to be processed by too much modules. On the other
side, we still want the advantages of modularity. A good compromise has to be made. Example of
modules are: IP, TCP, ICMP, etc. A IP-reassembly module is for example too fine grained and a
TCP/IP module is too large grained.

2.4 Configuration

To make the system as flexible as possible, each module should know as little as possible about the
other installed modules. However, each module on a layer must know about the modules on the next
layer to decide which one should receive the packet next. We call this decision a “configuration”
decision.

The independence of each module to each other was resolved by the use of a “unclean” library,
which makes the decisions of which module is the next to process a packet. This library is also
responsible for the “cooperation” between the modules, for example it does the mapping between
Ethernet addresses and IP addresses (with the help of theARPmodule) betweenIP andEthernet .
We call this library “unclean” because it is highly dependent on all the modules, opposed to the
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“clean” independent protocol modules. The advantage of using such a library is that only this library
has to be changed whenever a new protocol module is added.

Thenetcfg library is discussed in chapter 7.

2.5 NetBufs

One of the most differing characteristic between TCP/IP implementations is the choice of how the
network data is stored in memory. The performance of the networking protocols is directly related to
the memory management scheme.

An important design decision was that avmAlloc requires about 2500 cycles to complete, which
can become a major bottleneck on a network implementation because of the high number of alloca-
tion/deallocations which have to be made.

Another problem is the fragmentation of the memory, which, because of the high number of alloc/free
made by a networking implementation, can become very high, if traditional algorithms are used.

To resolve this problem, only big chunks of memory (called pools) are allocated withvmAlloc .
These pools are then divided in equal sizes buffers thus avoiding also internal fragmentation and
making the implementation simple. A pool (which is 4096 bytes big) can be divided in 1 to 32
yielding buffers from 124 to 4080 bytes.

Common buffer manipulation such as adding a header can be made without the need to move data, in
a way similar to BSD buffers, thus making the zero-copy goal possible.

NetBufs are explained in detail in chapter 3.

2.6 Attributes

Yet another problem with the independence of modules is that it is very frequent that a module must
know information already processed by a module which did come before. For example theTCPcan’t
be made really independent and must know theIP address of the sender, the receiver and so on. This
is traditionally resolved with the use of complicated interfaces different for each module-to-module
communication.

Even with the usage of complicated interfaces, a problem subsists: the communication of parameters
between two modules which make use of a tunnel of modules between them. Consider this example:
the “Type Of Service” field of the IP header must be controlled by the User interface module, but isn’t
known by the transport-layer modules such as TCP. How can the User interface module say the IP
header which TOS it wants?

To resolve the above two problems a clever idea found in Scout , “a communication-oriented oper-
ating system targeted at network appliances”, is used: the Attributes (see [3] or the Home-page at
http://www.cs.arizona.edu/scout ). We will call these “Attributes” Network Attributes
or in short NetAttrs.

A NetAttr is a pair (key, value). In addition to the data-buffer (a NetBuf), a hash-table of NetAttrs
(sort of database of attributes) is also passed from module to module. These attributes can be read and
modified by each module in the vertical path. A module simply doesn’t care about attributes it doesn’t
know about. For example the IP module sets the attributes for source address, destination address and
so on. These attributes are then read by the TCP module.

NetAttrs are described extensively in chapter 6.



Chapter 3

Network Memory Buffers (netbuf )

3.1 Introduction

One of the most differing characteristic between TCP/IP implementations is the choice of how the
network data is stored in memory. The performance of the networking protocols is directly related to
the memory management scheme.

An important design decision was that avmAlloc requires about 2500 cycles to complete, which
can become a major bottleneck on a network implementation because of the high number of alloca-
tion/deallocations which have to be made.

Another problem is the fragmentation of the memory, which, because of the high number of alloc/free
made by a networking implementation, can become very high, if traditional algorithms are used.

3.2 Memory Pools

To minimise the number ofvmAlloc which have to be made, only “pools” of 4096 bytes (can be
easily modified) are allocated. Because of the fixed size of the pools, the external fragmentation is
kept at a minimum.

To avoid also internal fragmentation, each pool is divided in equal size NetBufs. The number of
divisions is determined at the creation of the pool and is a power of 2.

To know which NetBuf is used and which is free, the bit-fieldused of 32 bits is kept in the pool-
header. In this bit-field, if a NetBuf is free, the corresponding bit is 0, and if it is used, the correspond-
ing bit is 1. The bit-field begins at the right (LSB) of theused long word. If for example the buf is
divided in two, only the last two bits are used.

The biggest NetBuf is thus 4096 bytes minus the pool-header (4080) and the smallest possible results
from a pool minus the pool-header divided in 32 aligned NetBufs (124 bytes).

Figure 3.1 shows how a pool is organised. In that figure, only the last 8 bits of theused bit-field
are shown. Note the space at the end of the pool: for efficiency reasons, it was chosen to align each
NetBuf to 4 bytes addresses. Therefore the size of each NetBuf is down-rounded to a multiple of 4,
leaving some unused space at the end of the pool.

The pool-header also contains theprev andnext pointers, which are used to implement double-
linked lists. At the moment, only an array of these double-linked lists is maintained: thefreepools .
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16 bytes

16 bytes

Pool Header NetBuf 1 (used)

NetBuf 2 (free)

NetBuf 4 (used) NetBuf 5 (used)

40
96

 b
yt

es

us
ed

 b
uf

s 
bi

tfi
el

d

508 bytes

NetBuf 7 (free)

NetBuf 3 (free)

NetBuf 8 (free)

NetBuf 6 (used)

Figure 3.1: NetBufs Pool for 508-bytes NetBufs

The freepools array contains for each possible NetBuf size (for aused bit-field of 32 bits, the
possible sizes are 6) a list of pools which have at least one free NetBuf which can be given away.

When the NetBuf-allocator is asked for a new NetBuf, the asked size is up-rounded and a pool with
free NetBufs is searched in freepools. If none is found, a new pool is allocated and, unless the
maximum size is asked, the new pool is added to thefreepools array.

When a NetBuf is freed and the pool which contains it doesn’t contain any other used NetBuf, the
pool is also freed with avmFree . To minimise the number ofvmAlloc andvmFree , only when
thefreepools list of that size contains at least two entries, the pool is freed.

3.3 The NetBuf

The NetBufs are similar to the mbufs in BSD as described in [5], with the difference that mbufs are
always 128 bytes long, whereas NetBufs can be from 124 to 4090 bytes long. In BSD, because of this
limitation that all the mbufs are 128 bytes long, “clusters” where implemented, which are external
2048 (or 1024) bytes buffers. These “clusters” are however a sort of “trick”, which is difficult to
manage and not elegant. The dimension-flexibility of the NetBufs resolves this problem.

Figure 3.2 shows the structure of a NetBuf.pool is used to point back at the pool-header andbufnr
is the position in the pool of this NetBuf.size is the dimension of the available payload space in
this NetBuf (in bytes).

next is used to build linked lists of NetBufs, when for example a header has to be added, but there
isn’t enough space at the head of the NetBuf. All the networking functions should support the con-
catenation of NetBufs as if they were a unique contiguous NetBuf. The only assertion which can be
made is that on the path from interface to user, all the headers are in the first NetBuf and on the path
from user to interface no header of a layer is spread across two NetBufs. The NetBuf allocator makes
also use of thenext pointer in case the required buffer length is bigger that the biggest NetBuf, in
which case a linked list is returned.

start andend are respectively offsets of the beginning and the end of the data in the NetBuf.
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bufnr

end

size

start

next

pool

data

si
ze

16
 b

yt
es

Figure 3.2: NetBuf structure

Please note that the shown structure and length of the header of the NetBufs or of the NetBuf pools
could change in the future. Only thenetbuf subsystem should access these headers directly. Other
submodules should use the provided functions or macros.

3.4 NetBuf statistics

Some statistics are gathered in a structure namednetbufStats . In this structure there are three
arrays:

� sizes : for each size-index (from 0 to 5 for 32 bitsused in pool-header) the corresponding
real-size in bytes of the NetBuf (with header).

� pools : for each size-index the number of allocated pools.

� usage : for each size-index the number of allocated NetBufs.

Size-index goes from the most-divided pool to the non-divided pool.

A little Topsy-shell program (NetStat.c ) is provided, which reads these variables and outputs on
the console statistics like:

size pools netbufs memory full
124 1 1 4k 3%
252 1 2 4k 12%
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508 1 1 4k 12%
1020 1 1 4k 25%
2040 0 0 0k 0%
4080 0 0 0k 0%

3.5 Thenetbuf library

The speed advantage of the NetBufs is that no thread-switch is made for every alloc/free pair. This
is possible because the NetBufs are managed cooperatively by each thread with a library of functions
called thenetbuf subsystem of library and which is written inNet/NetBuf.c .

There is a problem with this approach though: Topsy automatically throws away the regions which
were allocated (vmAlloc ) by a thread, when the thread is killed.

Consider this situation: thread A makes a alloc, which results in avmAlloc of a new pool. Thread B
makes also a alloc, and is given a buffer in the pool allocated by A. Now A for some reason is killed
and with it the pool is freed. B still uses the buffer in the now-freed pool!

To resolve this problem, thevmAlloc andvmFree are always made by thenetmain thread (de-
scribed in section 8.2). When a networking thread wants to allocate a new pool, it sends a message (a
VMALLOCmessage) asking thenetmain thread to allocate it. Because of the design of NetBufs, the
creation of new pools shouldn’t happen frequently and therefore the added thread-switch shouldn’t
slow the system by much.

3.6 Macros description

Macro Description

NETBUFMAXBUFS(s) Number of NetBufs in a pool for size-indexs

NETBUFHEADERSIZE Size of NetBuf-header (at the moment 16 bytes).

NETBUFDATA(netbuf) Returns pointer to the data-region (start to end )

NETBUFSIZE(netbuf) Wrapper for fieldsize

NETBUFSTART(netbuf) Wrapper for fieldstart

NETBUFEND(netbuf) Wrapper for fieldend

NETBUFLEN(netbuf) Data-region length (start �end )

NETBUFHEADSPACE(netbuf) Space available beforestart

NETBUFTAILSPACE(netbuf) Space available afterend

3.7 Functions description

netbufInit

void netbufInit();

Initialises thenetbuf subsystem.
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netbufAlloc

int netbufAlloc(NetBuf *bufPtr, unsigned int size);

Allocates a new NetBuf with at least dimensionsize . If the required dimension is bigger than the
biggest NetBuf possible, a linked list of NetBufs is allocated. If the allocation succeeds, the function
returns the total size of the allocated NetBufs andbufPtr points to the new NetBuf (to the first in
case of a linked-list). On fail, 0 is returned.

netbufFree

void netbufFree(NetBuf buf);

Frees the NetBufbuf . If buf is a linked list, frees all the NetBufs in the list.

netbufAddHead

int netbufAddHead(NetBuf *bufPtr, unsigned int len);

Function used to reserve space for a header to be added. If the NetBuf pointed bybufPtr has at
leastlen bytes available beforestart , start is moved back bylen . If there isn’t enough space,
a new (more if necessary) NetBuf is allocated and*bufPtr adjusted accordingly.

netbufLen

unsigned int netbufLen(NetBuf buf);

This function traverses the NetBuf list with headbuf and sums up the total length of the data.

netbufTrim

void netbufTrim(NetBuf buf, unsigned int len);

If buf -data is longer thanlen , moveend and, if necessary, remove NetBufs, so that thebuf -data
length islen .

netbufPosition

int netbufPosition(NetBuf *buf, unsigned int *position);

position refers to the absolute byte position in a virtual big buffer which is in reality a linked list
of netbufs. After the function-call, buf points to the netbuf which contains that byte, and position is
adjusted to the position in that netbuf. Returns 1 on success.

netbufCopy

int netbufCopy(NetBuf *dest, NetBuf src, int pos, int len);

Makes a copy ofsrc -data starting from positionpos and ending atlen . It does traverse the linked
list as if it were a single NetBuf. Returns 1 on success and 0 on failure. This function is used for the
IP-fragmenting algorithm.
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netbufClone

int netbufClone(NetBuf *dest, NetBuf src);

Makes an exact copy of the NetBufsrc , including eventual NetBufs in a linked list. Returns 1 on
success and 0 on failure.
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Network Device Drivers

4.1 Introduction

User-space protocol stacks are very nice, but they are traditionally also slow and therefore kernel-
space implementation are more common today. It is however possible as described in [1] to achieve
nearly same performance with user-space protocol stacks. The problem is that one more copy of data
from kernel-space to user-space has to be made and more task switches also.

This implementation uses a mechanism which permits the direct copy of network interface data into
a user-space buffer, thus removing the biggest disadvantage of user-space implementations.

The kernel-space drivers for the interfaces are kept intentionally the smallest possible. It is also
possible that in the future, when a full paging memory management is implemented in Topsy, that all
the driver will reside in user-space, because it will be then possible to access the interface memory
from user-space.

4.2 Input processing

As shown in figure 4.1, an interface driver is composed of three parts: the interrupt service routine
(ISR) in kernel-space, the interface-driver in kernel-space and the interface-module in user-space.

Ethertap

ISR2

3

1 4

5

Interrupt

Ethertap

Module

Ethertap

Driver

ioReadioSubscribe

User

Kernel

netmodSend

ioNotify

Figure 4.1: Ethertap input processing



20 CHAPTER 4. NETWORK DEVICE DRIVERS

It is very important that the ISR must complete the most rapidly possible, because since Topsy hasn’t
priority levels for interrupts, each ISR is fully masked, and thus the responsiveness of the whole
system is compromised if they are not very fast.

The most simple protocol for the exchange of data would be (like the UART driver for example):

� User-space module makes a blockingioRead

� When new data comes, the data is copied by the Interrupt Service Routine and the user-space
module is unblocked.

The problem with this scheme is that the total length of the incoming packet isn’t known when the
user-space module makes the blockingioRead before it’s arrival (i.e. when the interrupt is trig-
gered), and since we want to directly copy the data into user-space buffers, the following protocol is
used (numbers as in figure 4.1:

1. The user-space module says to the kernel-space driver, that he his responsible for packets out-
going from this interface withioSubscribe . Only the first module after the kernel-space
driver initialisation is accepted.

2. When a packet arrives, an interrupt is triggered.

3. The Interrupt Service Routine sends a message to the registered user-space module saying that
a new packet has arrived and how long it is (ioNotify ).

4. The user-space modules allocates a new NetBuf, which can contain as much data as said in the
ioNotify message and makes a non-blockingioRead on the device.

5. The user-space module sends the data to higher-layer modules.

Output processing is much more simpler: aioWrite is made whenever a new packet has to be sent.

4.3 Ethertap driver

The only driver which is implemented is the Ethertap driver, designed to work with the device de-
scribed in section C.2.

The user-space module is described with the other modules in section 8.3.

4.3.1 Ethertap kernel-space driver (IO/Drivers/Ethertap.c )

TheThreadId of the user-space module (subscribed ) is stored in theextension part of the
IODevice structure which is initialised inIO/IOMain.c and which is then passed by Topsy to
each kernel-space driver functions.

This file includes all the function which are required for theIODeviceDesc structure:
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ethertap interruptHandler

void ethertap interruptHandler(IODevice this);

This function is the the Interrupt Service Routine (or “Handler”). It reads the packet length and sends
a message to the user-space module saying that a message of that length is arrived and should be read
from the device’s memory.

ethertap init

Error ethertap init(IODevice this);

Function called to initialise the kernel-space driver.

ethertap read

Error ethertap read(IODevice this, ThreadId threadId,
char* buffer, long int* size);

When aioRead is made, this function is called, which copies*size bytes from the Ethertap device
to buffer . Note that, althoughbuffer will be probably contained in a NetBuf, the kernel-space
doesn’t know anything about NetBufs and their structure, it just copies the data frombuffer to
buffer+*size .

ethertap write

Error ethertap write(IODevice this, ThreadId threadId,
char* buffer, long int* size);

When aioWrite is made, this function is called, which copies*size bytes frombuffer to the
Ethertap device.

There is a commodity function callednetioWrite in NetIO.c which follows the NetBuf and
sends each chunk of data to the device.

ethertap handleMsg

void ethertap handleMsg(IODevice this, Message *msg);

This function is used to handle special messages:IO SUBSCRIBEandIO GETADDR.

IO SUBSCRIBEwrites theThreadId of the sender thread in a device-specific variable, which is
then used to send backIO NOTIFY messages by the ISR.

IO GETADDRis used to get the hardware address of the ethertap device (which is hard-coded in
Ethertap.java ).
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Modules

5.1 Overview

The modular architecture of the TCP/IP Stack was already described in section 2.2. Figure 5.1 gives
a more detailed graphical overview.

5.2 Module Interface (netmod )

The definition of the interface of a module is contained inNetModules.c (and the corresponding
header file).

A module is in Topsy a thread. This make the whole system much more simple and elegant because
the message passing implementation is already implemented. It also makes a possible future dynamic
addition of protocol modules at run-time possible. As we will see later, this has some costs though,
which will be analysed in section 9.2.

ThreadId s of the module-threads are defined when the modules are created at run-time. Therefore
another referencing scheme was implemented, so that each module has a unique fixed number. The
mapping between this “NetModuleId and theThreadId is made with a array which is filled at
the creation of each module (seenetmodAdd ).

TheNetModuleId for each module are defined inNetModules.h for the sake of simplicity (they
have the formNETMODULEXXX), but it is permitted to define new ones outside of it, provided that
they are all equal or higher thanNETMODULELAST.

A module can normally receive two type of messages:NETMODSENDUP, when a packet comes from
a lower-layer module, andNETMODSENDDOWN, when a packet comes from a higher-layer module.
Both of these messages share the same message structure, which is used for all the communications
between modules and between a user module and a module:

typedef struct NetModMsg_t {
ThreadId from;
NetModMessageId id;
NetBuf buf;
NetAttrs attrs;
long value;

} NetModMsg;
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Figure 5.1: Modules overview

from and id are taken from theMessage structure. Note that the dimension of a Message in
Topsy at the moment is 4*5 bytes andNetModSendMsg was also made that long for compatibility
reasons.buf is the NetBuf containing the packet-data andattrs is the table of attributes, which go
along with the packet.value is used whenever only a long value has to be passed (it isn’t used for
NETMODSENDUPandNETMODSENDDOWN).

There are at the moment three more message types:NETMODLISTEN is used by a user thread to
tell a module (at the moment only UDP) that it wants to receive a certain type of incoming packets
(for the UDP the type is the destination port number, specified in thevalue message field, see
section 8.8).NETMODLISTENREPLY is used by a module to acknowledge aNETMODLISTEN
andNETMODCLOSEis used to close the “listening”.

It is recommended to use the provided functions and not the structure directly. For each message
type, two versions of the functions are provided: one which sends a message to a module identified
by aNetModuleId (for examplenetmodSendUp ) and one which sends the message directly to a
thread identified by aThreadId (for examplenetmodSendUpThread ). The former is normally
used to send a message to a module and the latter is used to send a message to a non-module thread
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(such as a user thread, which uses the networking modules).

5.3 Functions description

The ThreadId version of the functions aren’t documented, because they are exactly the same as
theNetModuleId versions, but are suffixed byThread (ex. netmodSendUpThread ) and their
first parameter is aThreadId .

netmodInit

void netmodInit();

Initialises the array which contains the mapping fromThreadId to NetModuleId .

netmodAdd

void netmodAdd(NetModuleId m, ThreadId t);

When a module is started, it has to call this function to register itself, so that the mapping between
NetModuleIdmand ThreadIdt can be made.

netmodMsgRecv

int netmodMsgRecv(NetModMsg *msg);

This function is a simplified version of Topsy’s tmMsgRecv. It returns 0 on failure. It is recommended
to always use this function, because, if in the future a transition from the threaded structure of the
modules to another could be made transparently.

netmodSendUp

void netmodSendUp(NetModuleId to,
NetBuf buf, NetAttrs attrs);

Sends to the module with NetModuleIdto the packet contained in the NetBufbuf with attributes
attrs . This function is called when a module has interpreted a packet (analysed and stripped the
protocol header), which is now ready to be sent up to higher layer modules. Note that thevalue
field is set always set to0 for this message type.

netmodSendDown

void netmodSendDown(NetModuleId to, NetBuf buf,
NetAttrs attrs);

Sends to the module with NetModuleIdto the packet contained in the NetBufbuf with attributes
attrs . This function is called when a module has processed a packet (added the protocol header),
which is now ready to be sent down to lower layer modules.
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netmodListen

void netmodListen(NetModuleId to, NetAttrs attrs, long value);

Sends to the module with NetModuleIdto a request to receive each packet which full fills certain
criteria as specified inattrs andvalue .

netmodListenReply

void netmodListenReply(NetModuleId to, NetAttrs attrs,
long value);

Sends a response to the “Listen” request to the module with NetModuleIdto . This function is
currently not used, but is provided for consistency reasons (the reply is normally sent not to a module,
but to a user thread).

netmodClose

void netmodClose(NetModuleId to, NetAttrs attrs, long value);

Sends to the module with NetModuleIdto a request not to receive anymore packets which full fill
certain criteria as specified inattrs andvalue .
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Network Attributes ( netattr )

6.1 Introduction

As already said in section 2.6, a Network Attribute is a (key, value) pair, bothunsigned short .
An efficient way to store these attributes in a “database” was needed. This database (called NetAttrs)
could however not take much memory, because for every packet, one of such databases is needed, and
thus the memory footprint of the networking protocols would become too big.

For efficiency reasons a hash-table was the chosen implementation. The hash-table resides in a 252
bytes NetBuf. There can be maximally 59 attributes in such a hash-table as shown in figure 6.1.
252 bytes NetBufs were chosen because they are a good compromise to have an efficient but small
hash-table. Note however that a different NetBuf-size could be chosen and nothing would have to be
changed exceptNetAttr.c and the corresponding header file.
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... ...
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bufnr
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Figure 6.1: NetAttrs hash-table

Attributes are not used only for the message passing between modules, but are also used for the
configuration of the interfaces and of the whole system, as described in chapter 7.
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6.2 Functions description

netattrNew

NetAttrs netattrNew();

Allocates a new NetAttrs hash-table.

netattrFree

void netattrFree(NetAttrs a);

Frees thea NetAttrs hash-table. This is implemented with a macro.

netattrHash

int netattrHash(unsigned short key);

This is the hashing function. Shouldn’t be used outside ofNetAttr.c .

netattrFind

int netattrFind(NetAttrs a, unsigned short key);

Findskey in the hash-tablea. Shouldn’t be used outside ofNetAttr.c .

netattrSet

int netattrSet(NetAttrs a, unsigned short key,
unsigned short data);

Sets the attribute (key ,data ) in the hash-tablea. Returns 1 on success, 0 on failure.

netattrUnset

void netattrUnset(NetAttrs a, unsigned short key);

Unset the keykey in the hash-tablea.

netattrGet

int netattrGet(NetAttrs a, unsigned short key,
unsigned short *data);

Searcheskey in the hash-tablea and, if it finds it, puts it’s value intro*data . Returns 1 ifkey was
found, 0 otherwise.

netattrDebug

void netattrDebug(unsigned long family, char *title,
NetAttrs a);

If family is enabled inNetDebug.h , prints a list of all the attributes present in the hash-tablea. It
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prints also a short string (title ) at the beginning.

6.3 List of attributes

The following table summarises all the attributes which are defined inNetAttr.h . Note however
that new ones outside ofNetAttr.h can be defined, provided that they are equal or superior to
NETATTRLAST.

Network Attribute Description

NETATTRWANTEDLINK
NETATTRWANTEDNETWORK
NETATTRWANTEDTRANSPORT

These attributes are currently not used, but should in the
future make it possible for a user-process (or a module)
to specify with what modules the packet should be pro-
cessed for each layer.

NETATTRIF FROM
NETATTRIF TO

Interface attributes:FROMandTOare respectively the
interface number (see section 7.2) from which comes
the packet and to which it should go.

NETATTRIF MTU Interface attribute: Maximum Transfer Unit for this in-
terface (used only for the configuration of an interface).

NETATTRETH FROM0
NETATTRETH FROM1
NETATTRETH FROM2
NETATTRETH TO 0
NETATTRETH TO 1
NETATTRETH TO 2

Ethernet attributes:FROMandTOare the hardware ad-
dresses of respectively the sending host and the receiv-
ing host. They are specified with three attributes (0 is
LSB) because the hardware address of a Ethernet device
is 6 bytes long and an attribute is 2 bytes long.FROMis
also used to specify the address of an interface.

NETATTRETH TYPE Ethernet attribute: network protocol-id in Ethernet
header.

NETATTRIP FROM0
NETATTRIP FROM1
NETATTRIP FROM2
NETATTRIP FROM3
NETATTRIP TO 0
NETATTRIP TO 1
NETATTRIP TO 2
NETATTRIP TO 3

Internet Protocol attributes:FROMandTOare the IP ad-
dresses of respectively the sending host and the receiv-
ing host. They are specified with four (could be made
with two) numbers for commodity reasons.FROMis
also used to specify the address of an interface.

NETATTRIP TOS IP attribute: “Type Of Service” in IP header.

NETATTRIP TTL IP attribute: “Time To Live” in IP header (maximum
number of “hops” before the packet is discarded).

NETATTRIP DF IP attribute: “Don’t Fragment” in IP header (fragment-
ing shouldn’t be made for this packet).

NETATTRIP ID IP attribute: “Fragment ID” in IP header (used to re-
assemble fragments).

NETATTRIP PROTOCOL IP attribute: “Protocol-ID” in IP header of the transport
protocol above IP.
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Network Attribute Description

NETATTRARPHWTYPE
NETATTRARPHWLEN
NETATTRARPPR TYPE
NETATTRARPPR LEN
NETATTRARPPR 0
NETATTRARPPR 1

Address Resolution Protocol: These attributes are
used for the generation of aARP REQUESTmessage.
TYPE, LEN, TYPE, LEN are the fields of the ARP re-
quest header (see [4]).0 and1 specify the IP address to
be resolved.

NETATTRUDPFROM
NETATTRUDPTO
NETATTRUDPNOCHECKSUM

User Datagram Protocol:FROMand TO are respec-
tively the source and destination port numbers. When
NOCHECKSUMis set, the checksum won’t be calculated
(which is in UDP facultative, but suggested).

NETATTRLAST First attribute which can be used externally.
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Configuration

7.1 Introduction

The term “configuration” is here used for two different aspects of the TCP/IP Stack: the configuration
of the host (for example the IP address, the interfaces and so on) and the configuration of the interac-
tion between the modules (for example what modules are installed and what packet should go to each
module).

We will will now see the first type of configuration: the configuration of the host.

7.2 Host and interfaces configuration

The same problems for the modularity of the implementation and the independence of the various
modules apply to the configuration of the host: the configuration is highly dependent on the mod-
ules which are installed. I only have to configure the IP address of a interface if the IP module is
installed. . .

In other words, each module wants to be able to retrieve information from a common configuration
database. That is exactly the same function of Network Attributes, and thus were used also for this
function, although were not initially thought to do so.

The host will have a NetAttrs hash-table for the global configuration and one for each interface
with the per-interface configurations. At the moment the global configuration hash-table isn’t cre-
ated, because there hasn’t been the need up to this writing. Only the per-interface configuration
was done. All the routines for the configuration of the interfaces is in the subsystemnetif (file
Net/NetIface.c ).

Thenetif subsystem not only does the configuration of the interfaces, but is also responsible for the
initialisation and management of them. A interface is defined in a structure (Net/NetIface.h ):

typedef struct NetIfDesc_t {
unsigned int nr;
NetIfMainFunction main;
char *name;
NetModuleId moduleId;
NetAttrs config;

} NetIfDesc;
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Each interface is identified by it’s interface number, which is also reproduced in the structure (nr ), in
case a pointer to the NetIfDesc structure is given, without the number.main is the main function of
the interface driver module (thread).name is the name which should be given to the module thread
andmoduleId is theNetModuleId of the driver.config contains the attributes hash-table with
the configuration.

The configuration is done at the moment at compile time inNet/NetInit.c , which is responsible
for the initialisation of the whole networking system.

7.2.1 Functions description (netif )

netifInit

void netifInit();

Initialise each defined interface and start the corresponding driver module. The interfaces are defined
in an global array (seeNet/NetIface.c ).

netifSetAttr

void netifSetAttr(unsigned int iface, unsigned short attr,
unsigned short data);

Set attributeattr to valuedata for interfaceiface .

netifGetAttr

int netifGetAttr(unsigned int iface, unsigned short attr,
unsigned short *data);

Get attributeattr for interfaceiface and put the value in*data . Return 0 on failure.

7.3 Modules Configuration (netcfg )

As said earlier (section 2.4), the glue between all the modules is done by an external subsystem (or
library) which is callednetcfg and which is contained mainly inNet/NetConfig.c .

For the moment, this “glue” work between the modules can be reduced to two important jobs: decide
which is the next module to process the packet and do the necessary mapping between two different
domains (for example map from Ethernet address to IP address).

The decision of which is the next module to receive the packet is done based only on the attributes.
The scheme is as follows: each module interprete and fill the protocol headers contained in packet
data (in a NetBuf) and based on these interpretations fill the attributes. The configuration library
shouldn’t modify or try to interprete the packet data directly, but should instead work only on the
attributes. This is very important, because clearly leaves the implementation detail of the protocol
only to the modules.

For this decision to succeed, it is thus important that each module fills enough attributes. For example
it is mandatory that the IP module fills theNETATTRIP PROTOCOL, without which the configura-
tion subsystem couldn’t know if a packet should be sent to the UDP module, to the TCP module or
another IP protocol module.
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The mapping between two domains should be done as follows: the domain specific attributes which
are also needed in the other domain, are translated according to a mapping and added to the attributes.

For example when a IP packet should be sent to a host with an Ethernet device, the attributes
NETATTRIP TO x (x from 0 to 3) are read by the configuration subsystem and the attributes
NETATTRETH TO x (x from 0 to 2) are added according to the ARP cache (see the ARP module in
section 8.5).

The implementation of the ARP cache is written in the fileNet/NetConfigARP.c .

7.3.1 Functions description (netcfg )

netcfgInit

void netcfgInit();

Initialisation of thenetcfg subsystem. For the moment only initialises the ARP cache.

netcfgSendNextDown

int netcfgSendNextDown(NetModuleId from, NetBuf buf,
NetAttrs attrs);

Every module should call this function when it has finished processing a packet which should go
further down in the protocol layers. It sends the packet to the next module and does the mapping of
attributes between the two modules if needed.

netcfgSendNextUp

int netcfgSendNextUp(NetModuleId from, NetBuf buf,
NetAttrs attrs);

Like netcfgSendNextDown but for packets in the opposite direction in the protocol layers.

netcfgarpAddCacheETHIP

void netcfgarpAddCacheETHIP(unsigned char *hw,
unsigned char *ip);

This functions is called by the ARP module (see 8.5) to add an entry to the ARP cache for the
Ethernet/IP mapping. This function is defined inNet/NetConfigARP.c .

7.3.2 Private functions description (netcfg )

These functions shouldn’t be used outside of thenetcfg subsystem.

netcfgNextUp

NetModuleId netcfgNextUp(NetModuleId from, NetAttrs attr);

Return the nextNetModuleId of the module that should process the packet which comes from
modulefrom , with attributesattr and which goes up in the protocol layers.
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netcfgNextDown

NetModuleId netcfgNextDown(NetModuleId from, NetAttrs attr);

Same asnetcfgNextUp but for packets in the opposite direction in the protocol layers.

netcfgTransformUp

int netcfgTransformUp(NetModuleId from, NetModuleId to,
NetBuf buf, NetAttrs attrs);

Make the required mapping for a packet which goes from modulefrom to moduleto . In other words
translatefrom specific attributes toto ’s understandable attributes and add them to already existing
attrs . buf is also passed, because it is possible that this packet is put on a hold queue to wait for
a resolve-process to complete (currently this does never happen). In such a case, 0 is returned. If the
packet can further be sent up, 1 is returned.

netcfgTransformDown

int netcfgTransformDown(NetModuleId from, NetModuleId to,
NetBuf buf, NetAttrs attrs);

Same asnetcfgNextUp but for packets in the opposite direction in the protocol layers.

netcfgarpResolveETHIP

int netcfgarpResolveETHIP(NetBuf buf, NetAttrs attrs)

Do the mapping from a IP address to an Ethernet address for this packet. This function generates
an ARP request in case one is needed (IP address not in cache). See the ARP module description in
section 8.5 for further details. Returns 0 if the message was put in a hold queue and 1 if all is well.
This function is defined inNet/NetConfigARP.c .

Note that since the hold queue isn’t currently implemented, the first packet that generates an ARP
request is simply thrown away. This is legal, because IP doesn’t provide a guaranteed reliable service.
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Module Instances

8.1 Introduction

Each module shares the same structure, and thus, because of this similarity, each one won’t be ex-
plained in detail.

To simplify the creation of new modules, a skeleton file was created, which is here reproduced, with
some debugging functions call removed, to improve readability (Net/Skel/Skel.c ):

#include <Topsy.h>
#include <Messages.h>
#include <Syscall.h>

#include <NetDebug.h>
#include <NetBuf.h>
#include <NetAttr.h>
#include <NetConfig.h>
#include <NetModules.h>

static void netsklMain(ThreadArg arg);
static void netsklUp(NetBuf buf, NetAttrs attrs);
static void netsklDown(NetBuf buf, NetAttrs attrs);

void netsklInit()
{

ThreadId netsklId;

/* Start main thread */
tmStart(&netsklId,netsklMain,(ThreadArg)0,"netskl");

}

static void netsklMain(ThreadArg arg)
{

ThreadId myThreadId, parentThreadId;
NetModMsg msg;

tmGetInfo(SELF, &myThreadId, &parentThreadId);

/* Add to list of modules */
netmodAdd(NETMODULE_SKEL, myThreadId);
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while(1) {
if(!netmodMsgRecv(&msg)) return;

switch (msg.id) {
case NETMOD_SENDUP:

netsklUp(msg.buf, msg.attrs);
break;

case NETMOD_SENDDOWN:
netsklDown(msg.buf, msg.attrs);
break;

}
}

}

static void netsklUp(NetBuf buf, NetAttrs attrs)
{

/* Process packet and fill attrs */

/* Send up packet */
netcfgSendNextUp(NETMODULE_SKEL, buf, attrs);

}

static void netsklDown(NetBuf buf, NetAttrs attrs)
{

/* Build header and fill attrs */

/* Send down packet */
netcfgSendNextDown(NETMODULE_SKEL, buf, attrs);

}

As you can see, the basic structure of a module is very simple: the init function starts the thread
(and does some initialisation, if necessary). The main function is a never ending loop which pro-
cesses the incoming messages. The “Up” function is called for upcoming packets and the “Down”
function is called for down going packets. Both of these function process the packet and call
netcfgSendNextUp or netcfgSendNextDown .

The init function is then called by thenetInit function defined inNet/NetInit.c , where the
initial configuration also happens.

Each module resides in a separate directory underNet . A short description of each module now
follows, with some notes when there is something special about a modules.

8.2 Thenetmain thread

This isn’t really a module, although in the future it could be also made so. Thenetmain thread is
thought as the controlling thread. It receives pool creation requests (see chapter 3) and should in the
future also be responsible for the user interface.

The code for thenetmain thread resides inNet/NetMain.c
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8.3 Ethertap Module (nettap )

This is a driver module for the Ethertap device, as explained in section C.2. It supports the stan-
dardNETMODSENDDOWNmessage, but not theNETMODSENDUPmessage because it doesn’t make
sense. It supports also theIO NOTIFY message, as explained in section 4.2.

Required and Added attributes

Up going packet Down going packet

Required NETATTRIF TO

Facultative

Added NETATTRIF FROM

8.4 Ethernet Module (neteth )

Module which receives the packets from all the installed Ethernet device modules (such as Ethertap).
Does interprete and fill the Ethernet header.

Required and Added attributes

Up going packet Down going packet

Required NETATTRIF FROM NETATTRIF TO
NETATTRETH TO 0
NETATTRETH TO 1
NETATTRETH TO 2
NETATTRETH TYPE

Facultative

Added NETATTRETH FROM0
NETATTRETH FROM1
NETATTRETH FROM2
NETATTRETH TO 0
NETATTRETH TO 1
NETATTRETH TO 2
NETATTRETH TYPE

8.5 ARP module (netarp )

Address Resolution Protocol (see [4], pp. 53–63). When an ARP request is processed, this module
directly generates the reply and calls a function innetcfg (netcfgarpAddCacheETHIP ) to add
the senders’s ARP information. Thenetcfg itself can send messages to this module, with a null
buffer, to generate ARP requests.

For the moment, only the ARP for IP on Ethernet is implemented.
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Required and Added attributes

Up going packet Down going packet

Required NETATTRIF FROM NETATTRIF TO
NETATTRARPHWTYPE
NETATTRARPHWLEN
NETATTRARPPR TYPE
NETATTRARPPR LEN
NETATTRARPPR 0
NETATTRARPPR 1

Facultative

Added NETATTRETH TYPE
NETATTRETH TO 0
NETATTRETH TO 1
NETATTRETH TO 2

8.6 IP module (netip )

Internet Protocol (see [4], pp. 33–52). In theIP directory there is also a file (NetIPchecksum.c )
which contains the IP checksum algorithm (taken from BSD and adapted to NetBufs) and which is
also used by other IP protocol modules such as UDP.

The IP module isn’t complete. It lacks for the moment forwarding and reassembly.

Required and Added attributes

Up going packet Down going packet

Required NETATTRIF FROM NETATTRIP TO 0
NETATTRIP TO 1
NETATTRIP TO 2
NETATTRIP TO 3
NETATTRIP PROTOCOL

Facultative NETATTRIP ID
NETATTRIP TOS
NETATTRIP TTL
NETATTRIP DF

Added NETATTRIP FROM0
NETATTRIP FROM1
NETATTRIP FROM2
NETATTRIP FROM3
NETATTRIP TO 0
NETATTRIP TO 1
NETATTRIP TO 2
NETATTRIP TO 3
NETATTRIP PROTOCOL

NETATTRIF TO
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8.7 ICMP module (neticmp )

Internet Control Message Protocol (see [4], pp. 69–83). For the moment only the ECHO REQUEST
and ECHO REPLY (ping) messages are implemented.

Required and Added attributes

Up going packet Down going packet

Required NETATTRIP FROM0
NETATTRIP FROM1
NETATTRIP FROM2
NETATTRIP FROM3

Facultative

Added NETATTRIP TO 0
NETATTRIP TO 1
NETATTRIP TO 2
NETATTRIP TO 3
NETATTRIP PROTOCOL

8.8 UDP module (netudp )

User Datagram Protocol (see [4], pp. 143–167). This module can receiveNETMODLISTEN and
NETMODCLOSErequests as described in section 5.2.

The checksum calculation is a problem because UDP needs the source IP address to calculate it and
isn’t known (if not specified) when the UDP wants to do it.

Required and Added attributes

Up going packet Down going packet

Required NETATTRIP FROM0
NETATTRIP FROM1
NETATTRIP FROM2
NETATTRIP FROM3
NETATTRIP TO 0
NETATTRIP TO 1
NETATTRIP TO 2
NETATTRIP TO 3

NETATTRIP FROM0
NETATTRIP FROM1
NETATTRIP FROM2
NETATTRIP FROM3
NETATTRIP TO 0
NETATTRIP TO 1
NETATTRIP TO 2
NETATTRIP TO 3
NETATTRUDPFROM
NETATTRUDPTO

Facultative

Added NETATTRUDPFROM
NETATTRUDPTO
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Results and Conclusions

9.1 Ping output and tcpdump

When run a PentiumPro 180Mhz machine with Linux, a ping to Topsy on the MipsSimulator looks
as follows:

dave@schweikert:/home/dave > ping 192.168.2.2
PING 192.168.2.2 (192.168.2.2): 56 data bytes
64 bytes from 192.168.2.2: icmp_seq=0 ttl=64 time=485.8 ms
64 bytes from 192.168.2.2: icmp_seq=1 ttl=64 time=193.8 ms
64 bytes from 192.168.2.2: icmp_seq=2 ttl=64 time=200.4 ms
64 bytes from 192.168.2.2: icmp_seq=3 ttl=64 time=192.5 ms
64 bytes from 192.168.2.2: icmp_seq=4 ttl=64 time=193.4 ms

--- 192.168.2.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 192.5/253.1/485.8 ms

The output oftcpdump (a very nice network debugging tool) of the previous ping is:

schweikert:/home/dave # tcpdump -vv -i tap0
tcpdump: listening on tap0
11:13:39.598072 arp who-has topsy tell linux
11:13:39.838026 arp reply topsy is-at 1:2:3:4:5:6
11:13:39.838068 linux > topsy: icmp: echo request (ttl 64, id 5119)
11:13:40.083218 topsy > linux: icmp: echo reply (ttl 64, id 1)
11:13:40.595754 linux > topsy: icmp: echo request (ttl 64, id 5127)
11:13:40.789248 topsy > linux: icmp: echo reply (ttl 64, id 2)
11:13:41.595767 linux > topsy: icmp: echo request (ttl 64, id 5132)
11:13:41.795699 topsy > linux: icmp: echo reply (ttl 64, id 3)
11:13:42.595788 linux > topsy: icmp: echo request (ttl 64, id 5137)
11:13:42.787947 topsy > linux: icmp: echo reply (ttl 64, id 4)
11:13:43.595776 linux > topsy: icmp: echo request (ttl 64, id 5142)
11:13:43.788832 topsy > linux: icmp: echo reply (ttl 64, id 5)
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9.2 Performance analysis

This section will try to evaluate the performance of the protocol stack. As a benchmarking test it was
chosen an ICMP ECHO REQUEST coming from the Ethertap interface followed by a ICMP ECHO
REPLY generated by Topsy and sent back. The test was made with a 56-bytes load (standard ping)
and a 1000-bytes load.

To make the analysis easier, the MipsSimulator’s Tracer was modified to write to a file each address
of the executed instructions. This trace-file was then analysed by a program which did count for each
function the number of executed instructions (profiling).

The full results of the profiling are in appendix D. From these results it is immediately evident that
the change from 56 to 1000 bytes does change only two functions: longCopy, which is used to copy
the data from the network interface to the NetBuf, and netipChecksum which is also used to compute
the ICMP checksum (the IP checksum is made on the same amount of data: the IP header).

The table in the previous section can be so summarised:

1000-bytes ping 56-bytes ping

function ins % ins %

Read/Write from device 4465 17.63 1161 5.54

Interrupt Service Routine 78 0.31 78 0.38

Message passing and Scheduling11524 45.55 11524 55.22

Network Modules 2775 10.95 1706 8.19

Network Attributes 2679 10.58 2679 12.83

NetBuf routines 801 3.17 734 3.52

Configuration (netcfg) 515 2.03 515 2.48

Miscellaneous 2468 10.66 2473 10.96

To process an echo request and generate the reply, more than half of the time (for 56 bytes ping) is
spent in scheduling and messaging. Although some scheduling would have to be made also with a
not multi threaded network protocol stack (kernel ISR switch to user protocol to kernel device read to
user protocol to kernel device write), it would be certainly less.

Note that under Miscellaneous, there is the lock and unlock of spinlocks, the Idle thread and other
minor functions.

In the following section, a possible solution for the problem of too much scheduling is proposed.

The networking code itself in the modules appears to be efficient. Network Attributes cost also some-
thing but it is acceptable, given the advantages that they provide. Some optimisations could be made
on the attributes, with the caching of information which is retrieved for each packet from the originat-
ing interface (such as it’s IP address). NetBuf allocation and deallocation is also very fast compared
to normal vmAlloc figures (which include two scheduling decisions).

This is implementation is very small: the size of whole networking user-space (as described in this
documentation) is 26 kbytes (text+data) and would be thus appropriate for an embedded device where
the memory is much limited. The dynamic allocation of buffers (versus a pre-defined, always allo-
cated buffers) makes also the smallest memory footprint possible at runtime.
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9.3 Future possible developments

9.3.1 Completion of TCP/IP stack

Implementing a protocol stack is a huge work and by the implementation of this one, some compro-
mises had to be made. Most noticeably the TCP protocol couldn’t be implemented because of lack
of time. Unfortunately TCP is also the most important IP protocol, so, if some serious usage of this
protocol stack is to be made, the TCP module should be written.

Another possible extension is the IP forwarding which completely lacks in this implementation, but
which isn’t normally needed by hosts (not routers).

The modular approach of the whole networking implementation and the use of attributes should how-
ever make the writing of those parts easier than for example it was for BSD.

9.3.2 Other protocol stacks

TCP/IP is certainly nowadays the most important protocol stack, but protocols which build upon
TCP/IP (such as SKIP for example) are becoming also very important. With this modular approach
and the fact that it is all in user-space, high layer protocols such as FTP for example could also be
implemented as modules.

The whole networking infrastructure is already implemented, and thus TCP shouldn’t require much
time to implement. A required service that TCP requires and that isn’t implemented is the whole
timers management (multiple threads should be able to request timer messages at different time inter-
vals).

IPv6 is the successor of IP (version 4) and therfore is also very important and could also be imple-
mented in this framework.

9.3.3 User interface

No user interface proper was implemented. For the moment, the user programs communicate directly
to the networking modules, as if they were them self modules.

A global user interface which encapsulates all the modules and doesn’t show to the user the internal
organisation of the modules could be an advantage. It would mean easier network programming and
also portability if the module change.

If a user interface is implemented, it would be a big advantage to make it, if not completely com-
patible, similar to the Unix Sockets, so that the porting of programs from other platforms would be
easier.

9.3.4 Lightweight user-threads

As shown in section 9.2, the message passing between modules costs considerable time. To improve
the performance without abandoning the modular concept and the ease of implementation, lightweight
user-threads could be used. Such lightweight user-threads are cooperative tasks implemented com-
pletely in user-space, removing thus the great complexity of the preemptive multitasking (saving of
all the registers and so on).
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Project Description

A.1 Einleitung

Topsy ist ein portables Microkernel Betriebssystem, das am TIK f¨ur den Unterricht entworfen wurde.
In der ersten Version wurde es f¨ur die Familie der 32-bit MIPS Prozessoren gebaut. Es zeichnet sich
durch eine saubere Struktur, eine hohe Portabilit¨at (Trennung des Systems in hardware-abh¨angige
und -unabh¨angige Module) und eine gute Dokumentation [1] aus. Im weiteren wird das System
auf die Familie der intel i386 Prozessoren portiert. Weitere Dokumentation ¨uber Topsy ist unter
http://www.tik.ee.ethz.ch/ topsy verf¨ugbar.

A.2 Aufgabenstellung

Obwohl bereits im Praktikum TI2 einfache Netzwerktreiber und Protokollmodule f¨ur Framing, Rou-
ting und Zuverlässigkeit entworfen werden, besteht keinerlei Einbindung des Systems in die Welt
der Internet-Protokolle. In dieser Semesterarbeit geht es darum, nach der gleichen Philosophie nach
der das Betriebssystem entworfen wurde (schlank, lesbar, schnell), einen Internet-Protokollstack zu
entwerfen und zu implementieren.

A.2.1 Ziele

Das Hauptziel dieser Arbeit ist eine les- und brauchbare TCP/IP Implementation f¨ur das Betriebs-
system Topsy. Dabei soll eine vollst¨andige IPv4 Implementation mit ICMP angestrebt werden.
Bezüglich trade-off Lesbarkeit/Performance soll das Design Aufschluss geben, wie weit eine TCP/IP
Implementation klar strukturiert und modularisiert werden kann, ohne grosse Leistungseinbussen in
Kauf nehmen zu m¨ussen.

A.2.2 Vorgehen

Da es sich bei der vorliegenden Arbeit um eine sehr anspruchsvolle und aufwendige Arbeit handelt,
soll die Arbeit, um m¨oglichst effizient vorzugehen, in vier Phasen gegliedert werden.

Der erste Teil besch¨aftigt sich nur mit dem Design, dazu geh¨oren u.a.:

� Lesen Sie sich in die Spezifikation von TCP/IP ein (RFC 791/793).
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� Machen Sie sich mit dem Betriebssystem Topsy vertraut.

� Machen Sie sich mit Konzepten wie Zero-copy I/O, getrennte Daten- und Kontrollpfade, Mo-
dularisierung, Memory Management, Timer Management und Kernel- vs. Userspace Imple-
mentation vertraut.

� Analysieren Sie bestehende Ans¨atze (BSD, Karn, etc.) und zeigen Sie deren Vor- und Nachteile
auf.

Die zweite Phase dient dazu, eine saubere Entwicklungs- und Testumgebung aufzubauen:

� Stellen Sie sich die notwendigen Tools auf einer Hostumgebung (z.B. Linux) zusammen. Dazu
gehören gcc, gas, gld, objcopy (alle i386 oder cross-i386) und bash, gmake, java (plattformun-
abhängig).

� Es soll ein Pseudo-Packetdriver f¨ur den Simulator auf Basis von Raw-sockets angelegt werden.

� Ueberlegen Sie sich, welche “Testprogramme” sinnvoll sind: ping (IP/ICMP), telnetd oder
remote shell (TCP), httpd (fake, versteht nur GET /), tcpcrashyou (random sender, attacker),
andere?

Die Phase 3 legt den Grundstein der Implementation:

� Hier wird die Basisfunktionalit¨at von IPv4 implementiert. Kontrollprotokolle wie ICMP
gehören auch hier hinzu. Spezialit¨aten, wie IGMP, die nicht zwingend notwendig sind, k¨onnen
weggelassen werden.

In Phase 4 kann auf IP aufgebaut werden, hier soll die Transportschicht mit UDP und TCP implemen-
tiert werden.

Weitere Hinweise:

� Auf dem Simulator testen, optional native (br¨auchte einen Network-Driver), auf alle F¨alle mit
einem andern Stack zusammen.

� Soll der Stack nicht nur auf dem Simulator gestestet werden, sondern auch mit Ethernet-Karten
(optional, z.B. auf Topsy i386) muss das ARP (Address Resolution Protocol) f¨ur Ethernet im-
plementiert werden.

� Name lookups werden ¨ublicherweise mit dem DNS Protokoll durchgef¨uhrt. In erster N¨aherung
soll jedoch nur eine lokale “resolve function” implementiert werden.

� Portabilität soll unbedingt erhalten bleiben (Bi-endian support) und Stabilit¨at soll erreicht wer-
den (geeignete Testmethode).

A.3 Bemerkungen

� Mit dem Betreuer sind w¨ochentliche Sitzungen zu vereinbaren. In diesen Sitzungen soll der
Student m¨undlichüber den Fortgang der Arbeit berichten und anstehende Probleme diskutieren.
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� Am Ende der zweiten Woche ist ein Zeitplan f¨ur den Ablauf der Arbeit vorzulegen und mit dem
Betreuer abzustimmen.

� Am Ende des zweiten Monats der Arbeit soll ein kurzer schriftlicher Zwischenbericht abgege-
ben werden, der ¨uber den Stand der Arbeit Auskunft gibt.

� Am Ende der zweiten Woche ist ein Zeitplan f¨ur den Ablauf der Arbeit sowie eine schriftliche
Spezifikation der Arbeit vorzulegen und mit dem Betreuer abzustimmen.

� Bereits vorhandene Software kann ¨ubernommen und gegebenenfalls angepasst werden.

� Die Dokumentation ist mit dem Textverarbeitungsprogramm “FrameMaker” zu erstellen.

A.4 Ergebnisse der Arbeit

Neben einem m¨undlichen Vortrag von 20 Minuten Dauer im Rahmen des Fachseminars Kommunika-
tionssysteme sind die folgenden schriftlichen Unterlagen abzugeben:

� Ein kurzer Bericht. Dieser enth¨alt eine Darstellung der Problematik, eine Beschreibung
der untersuchten Entwurfsalternativen, eine Begr¨undung für die getroffenen Entwurfsent-
scheidungen, sowie eine Auflistung der gel¨osten und ungel¨osten Probleme. Eine kritische
Wür-digung der gestellten Aufgabe und des vereinbarten Zeitplanes rundet den Bericht ab (in
vierfacher Ausf¨uhrung).

� Ein Handbuch zum fertigen System bestehend aus System¨ubersicht, Implementations-
beschreibung, Beschreibung der Programm- und Datenstrukturen sowie Hinweise zur Portie-
rung der Programme.

� Eine Sammlung aller zum System geh¨orenden Programme.

� Die vorhandenen Testunterlagen und -programme.

� Eine englischsprachige (Deutsch falls Bericht Englisch) Zusammenfassung von 1 bis 2 Seiten,
die einem Aussenstehenden einen schnellen berblick ¨uber die Arbeit gestattet. Die Zusammen-
fassung ist wie folgt zu gliedern: (1) Introduction, (2) Aims & Goals, (3) Results, (4) Further
Work.

A.5 Literatur

[1] G. Fankhauser, C. Conrad, E. Zitzler and B. Plattner., Topsy - A Teachable Operating System,
TIK, 1997

[2] Topsy home page: http://www.tik.ee.ethz.ch/ topsy

[3] RFC 791: IP

[4] RFC 793: TCP
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Debugging facilities (netdbg)

There was a need for a flexible debugging facility inside of the networking implementation, which
could be selective on which debugging information to display.

Each subsystem has a correspondingNETDEBUGXXX ‘family-id’. NETDEBUGMASKis set (with
OR) to each ’family-id’ of the subsystems for which the debugging information is wanted (see
NetDebug.h ).

For example:

#define NETDEBUG
#define NETDEBUG_MASK (NETDEBUG_ETHERNET | NETDEBUG_IP \

| NETDEBUG_ICMP)

will make the debug information of the Ethernet, IP and ICMP subsystems display on screen. To turn
off all the debugging information,NETDEBUGcan be undefined.

B.1 Functions description

netdbgInit

void netdbgInit();

Initialises the netdbg subsystem.

netdbgDisplay

void netdbgDisplay(unsigned long family, char *str);

Displaysstr if family is selected.

netdbgPrintf

void netdbgPrintf(unsigned long family, char *fmt, ...);

This is a function similar to the C-library functionprintf , but only displays on screen iffamily
is selected.

To make the implementation more flexible, the netdbgPrintf uses the functionvsprintf which can
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be found inUser/UserSupport.c . Use this function and all the other functions which make use
of vsprintf with caution, becausevsprintf is far from complete and stable.
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Development Environment

C.1 Linux Ethertap device

Since I had already Linux installed at home and since it is very flexible, I’ve chosen Linux as the
development platform, on which I would then run the MipsSimulator.

Linux can be configured to simulate a network device which is called “Ethertap”. It is so described in
it’s documentation:

Ethertap provides packet reception and transmission for user
space programs. It can be viewed as a simple Ethernet device,
which instead of receiving packets from a network wire, it
receives them from user space.

This is exactly what is needed to simulate an Ethernet subnet. On one side there is the Linux Ethertap
device and on the other side the MipsSimulator Ethertap device. The communication between the two
is made with the device file/dev/tap0 (see figure C.1).

C.2 MipsSimulator Ethertap device (Ethertap.java)

The Ethertap device implemented in the MipsSimulator is a very simple memory mapped device. The
memory layout of the device is described in table C.1.

The procedure to send data to the network (to Linux) is as follows:

� Proceed only if ’Send Data’ (SD) is 0.

� Set the size of the packet to be sent in ’Data Out Length’.

� Fill the data in the ‘Data Out’ memory region.

� Set SD to 1.

The procedure to receive data from the network (from Linux) is as follows:

� When a new packet is received, interrupt 2 is triggered and ’Received Data’ is set to 1.
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UART deviceEthertap device

Processor

TCP/IP
Stack

Tracer

Ethernet card/dev/tap0
Linux

MipsSimulator

Ethertap driver
Kernel

User

User program
TOPSY

kernel

Figure C.1: Simulation environment

Offset Description

0 (0x000) Status register (1 byte, bit 0: Send Data, bit 1: Data Read)

4 (0x001) Control register (1 byte, bit 0: Received Data)

16 (0x010) Hardware Address (read only), 6 bytes

32 (0x020) Data In Length (short)

36 (0x024) Data In (device! Topsy)

2048 (0x800) Data Out Length (short)

2052 (0x804) Data Out (Topsy! device)

Table C.1: Ethertap device memory layout
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� The size of the Ethernet packet can be read from ’Data In Length’.

� The packet can be read from the ’Data In’ memory region.

� Set ’Data Read’ to 1.

Unfortunately, java (JDK 1.1.6 and kaffe 0.9.0) seems to have problems reading and writing to special
device files. Therefore an intermediate “Ethertap server” (ethertap.c) was written in C, which, as a
side effect, makes it easier to port the simulation environment to other platforms.

This Ethertap server communicates the packets it receives from Linux via a TCP socket on the local
machine on port 4000.

C.3 MipsSimulator Tracer (Tracer.java)

To simplify the evaluation of the performance and the debugging of the developed code in Topsy, a
symbolic tracer was written which produces an output similar to this:

80023cbc schedulerSetBlocked {
80024328 lock {
800215f8 testAndSet (12/12)

} lock (13/25)
80024350 listSwap {
800208c4 removeElem (19/19)

} listSwap (39/58)
80024360 unlock (2/2)

} schedulerSetBlocked (37/122)

The symbols indicate the name of the functions which the tracer recognises to be executed. The
indenting and the curly braces are used to show the recursion level. The two numbers in parentheses
indicate the number of cycles respectively without and with the called functions.

In this example, the ’lock’ function is called by ’schedulerSetBlocked’. The ’lock’ function calls
’testAndSet’, which is 12 cycles long. In total, the ’lock’ function is 25 cycles long (including the
’testAndSet’).

Note that there may be some cosmetic problems when a thread switch is executed, because the PC is
changed by the scheduler. A ’>’ sign should appear to indicate such a jump.

C.4 MipsSimulator Profiler

A Profiler for the executed instructions was also written, so that performance analysis as made in
appendix D were possible. The Profiler does function as follows:

� The MipsSimulator writes to a file the address of each executed instruction.

� A C program reads this file, reads the symbols and makes a statistic on how much instructions
were executed for each function and how much times each function was called.
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Measurements

D.1 Ping measurements (ICMP ECHO REQUEST and REPLY)

“calls” is the number of executed function calls, “ins” the number of executed instruction in that
function and “i/c” is the average instructions count for that function.

1000-bytes ping 56-bytes ping
function calls i/c ins % calls i/c ins %
longCopy 16 265 4242 16.76 16 58 938 4.49
netipChecksum 3 482 1446 5.71 3 125 377 1.81
schedule 19 71 1355 5.35 19 71 1355 6.49
hashListGet 43 28 1245 4.92 43 28 1245 5.97
netattrGet 35 34 1215 4.80 35 34 1215 5.82
saveContext 22 53 1166 4.61 22 53 1166 5.59
msgDispatcher 21 54 1138 4.50 21 54 1138 5.45
tmMsgRecv 11 100 1100 4.35 11 110 1100 5.27
restoreContext 22 47 1034 4.09 22 47 1034 4.95
netattrSet 27 27 729 2.88 27 27 729 3.49
testAndSet 60 12 720 2.84 60 12 720 3.46
kSend 11 58 640 2.53 11 58 640 3.07
netattrNew 2 318 636 2.51 2 318 636 3.05
listSwap 16 39 627 2.48 16 39 627 3.00
syscallExceptionHandler 21 26 546 2.16 21 26 546 2.62
getMessageFromQueue 11 48 529 2.09 11 48 529 2.53
listGetFirst 35 14 515 2.03 35 14 515 2.47
netbufAlloc 3 156 468 1.85 3 137 411 1.97
hashFunction 43 9 387 1.53 43 9 387 1.85
lockTry 38 8 304 1.20 38 8 304 1.46
removeElem 16 19 304 1.20 16 19 304 1.46
listMoveToEnd 11 26 296 1.17 11 26 296 1.42
schedulerSetBlocked 8 37 296 1.17 8 37 296 1.42
schedulerSetReady 8 36 288 1.14 8 36 288 1.38
lock 22 13 286 1.13 22 13 286 1.37
kRecv 11 23 262 1.04 11 23 262 1.26
netethUp 1 228 228 0.90 1 228 228 1.09
netbufFreeBuf 3 65 196 0.77 3 62 186 0.89
addMessageInQueue 3 60 180 0.71 3 60 180 0.86
netethDown 1 149 149 0.59 1 149 149 0.71
netdbgPrintf 25 5 125 0.50 24 5 120 0.57
unlock 60 2 120 0.48 60 2 120 0.58
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1000-bytes ping 56-bytes ping
function calls i/c ins % calls i/c ins %
tmMsgSend 10 12 120 0.47 10 12 120 0.58
tmIdleMain 60 1 119 0.47 60 1 119 0.57
netmodSendUp 3 38 114 0.45 3 38 114 0.55
netcfgSendNextDown 3 33 99 0.39 3 33 99 0.47
netifGetAttr 9 11 99 0.39 9 11 99 0.47
netcfgSendNextUp 3 33 99 0.39 3 33 99 0.47
memCopy 2 42 84 0.33 2 42 84 0.40
netipFillHeader 1 82 82 0.32 1 82 82 0.39
netmodSendDown 3 27 81 0.32 3 27 81 0.39
neticmpEchoUp 1 79 79 0.31 1 79 79 0.38
netipForUs 1 79 79 0.31 1 79 79 0.38
netipDownSend 1 78 78 0.31 1 78 78 0.37
netcfgarpResolveETHIP 1 72 72 0.28 1 72 72 0.35
ioDeviceMain 0 0 67 0.26 0 0 67 0.32
ioCheckBufferAddress 2 33 66 0.26 2 33 66 0.32
netcfgarpLookupETHIP 1 65 65 0.26 1 65 65 0.31
netcfgTransformDown 3 18 56 0.22 3 18 56 0.27
netbufLen 5 10 50 0.20 5 10 50 0.24
netcfgNextUp 3 15 47 0.19 3 15 47 0.23
netipVerify 1 45 45 0.18 1 45 45 0.22
neticmpUp 1 45 45 0.18 1 45 45 0.22
netbufFree 3 15 45 0.18 3 15 45 0.22
netipDownSendFragment 1 45 45 0.18 1 45 45 0.22
nettapRead 1 44 44 0.17 1 44 44 0.21
tmSetReturnValue 21 2 42 0.17 21 2 42 0.20
netbufAddHead 2 21 42 0.17 2 21 42 0.20
netipUp 1 41 41 0.16 1 41 41 0.20
nettapMain 0 0 41 0.16 0 0 41 0.20
netethMain 0 0 40 0.16 0 0 40 0.19
intDispatcher 1 39 39 0.15 1 39 39 0.19
ipcResetPendingFlag 19 2 38 0.15 19 2 38 0.18
genericSyscall 2 19 38 0.15 2 19 38 0.18
netipMain 0 0 36 0.14 0 0 36 0.17
netcfgNextDown 3 11 33 0.13 3 11 33 0.16
ethertapread 1 33 33 0.13 1 33 33 0.16
netipSetAttrs 1 33 33 0.13 1 33 33 0.16
nettapDown 1 29 29 0.11 1 29 29 0.14
ethertapwrite 1 28 28 0.11 1 28 28 0.13
ioWrite 1 26 26 0.10 1 26 26 0.12
netioWrite 1 26 26 0.10 1 26 26 0.12
ioRead 1 26 26 0.10 1 26 26 0.12
ethertapinterruptHandler 1 25 25 0.10 1 25 25 0.12
mmAddressSpaceRange 2 12 24 0.09 2 12 24 0.12
netipDown 1 21 21 0.08 1 21 21 0.10
netcfgNextUpIP 1 20 20 0.08 1 20 20 0.10
tmResetClockInterrupt 1 20 20 0.08 1 20 20 0.10
netcfgNextUpEth 1 18 18 0.07 1 18 18 0.09
neticmpMain 0 0 17 0.07 0 0 17 0.08
hwExceptionHandler 1 14 14 0.06 1 14 14 0.07
netcfgTransformUp 3 2 6 0.02 3 2 6 0.03
netipRoute 1 2 2 0.01 1 2 2 0.01
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