
30LinuxUser/March 2001

ALL YOU NEED TO KNOW ABOUT...

The early history of Linux, Part 1

L
inux has made a remarkable impression on industry
over the past few years. Linux history, however, goes
back almost a decade, or more than 17 years if you

count the efforts of the Free Software Foundation. Linux is
built on the paradigms, although not the source code, of
Unix systems. Today Linux is still perceived by some as a
new and curious beast rather than a proven and solid Unix
like solution. In fact, it is not Linux that is new, but the
popularity of Linux.

One probably has to go back all the way to 1969 in order
to understand the importance of Linux to the 
computer industry. In an attempt to overcome the 
restrictions of the then popular batch systems, Ken
Thompson started in 1969 to develop the first Unix system
at the Bell Laboratories, a daughter of AT&T and Western
Electric. This initial version was written in the DEC PDP-7
assembler language. In order to achieve a more machine-
independent architecture for his operating system,
Thompson developed the programming language B, which
was later refined by Dennis Ritchie to the C 
programming language. The second version of Unix, this
time for the PDP-11, appeared in 1971 and was mostly writ-
ten in C. Most operating systems today
are still written in this language,
although usually a somewhat more mod-
ern dialect is being used, called ANSI C.

A Unix system is defined, not only by
the operating system kernel responsible
for the communication with the
machine’s hardware and tasks like 
scheduling processes, allocating memory
and so on, but also by a series of utility
programs. These allow the user to 
perform tasks such as browse the file
system, erase or create new files, or to
work with text. Utility programs are
usually small and specialised so they
can be implemented with as little code as possible. This
reduces the amount of errors in the code and is one of the
main reasons for the remarkable stability and ease of use of
a Unix system. Utility programs can be lined up as a sort of

chain, where the output of one
program forms the input of
another. This way you can perform
the most complex tasks, while still
using the same easy-to-use utility
programs.

Almost all commercial Unix
systems today are descendants of
Unix I Version 7, which appeared

in 1979. As of that time the development of Unix split into
various branches, the most important of which are System
V (or Unix V) and BSD. The latter was developed at the
University of Berkeley, California. More surprisingly, for
those who weren’t alive at the time, there is even a branch
of Unix that was started and maintained by Microsoft
called XENIX, although Microsoft no longer has any direct
involvement. Today there are many commercial Unix sys-

Roots of a revo

Did you know?
Linus Torvalds’ original ‘offi-
cial’ name for his creation was
FREAX! Ari Lemmke, the staff
member at Helsinki University
who set up an FTP site for the
code, disliked the name, and
used Linux instead. The name
appears to have stuck

tems, the best known of which include IBM AIX, SunOS,
Sun Solaris, Compaq Tru64, HP-UX and SGI Irix. There are
also several variants of BSD Unix that are freely available.

Another Unix-like operating system that will play a
role later in this story, is Minix, introduced by Andrew S.
Tanenbaum in January 1987 and designed as a teaching
system. Mr. Tanenbaum is a leading computer scientist
who now works at the Vrije Universiteit in Amsterdam.

Standardisation and the OS market
Given this wide variety of different Unix implementations,
it is not surprising that there was a need for standardisa-
tion. Different vendors had different preferences and were
often forced to introduce new, sometimes incompatible,
features in order to differentiate themselves from the rest
of the market. Three main standardisation efforts were
started over time. These were the SVID (System V Interface
Definition), POSIX (formerly “/usr/group”) and X/Open
(formerly BISON). X/Open is the most recent attempt to
achieve a source code-level compatibility between the par-
ticipating Unix implementations. Funnily enough it start-
ed in Europe, although US companies (including AT&T)
joined later. Unfortunately, despite all of these efforts there
are still many remaining differences between the different
implementations.

During the late 1980s and early 1990s Intel-based com-
puters and the Windows operating system in its various
incarnations grew into the enterprise, gaining the major
portion of the desktop market and a substantial share of
the server market – the traditional domain of Unix sys-
tems. Today Intel and Intel-compatible machines can
claim to perform in the same league as dedicated Unix
workstations with similar computing power. Still, most
commercial Unix systems are not available on Intel hard-
ware. Many Unix manufacturers co-operate closely with or
own part of the companies that manufacture the chips

The pioneers: Dennis
Ritchie and Ken
Thompson at work in
1970 (top),
Richard Stallman 
(AKA RMS) in his 
guise as St IGNUtius
(middle), the
patron saint of free
software, and Linus
Torvalds, whose 
copyleft kernel
provided the crucial 
last piece in the puzzle



LinuxUser/March 2001 31

lution Many people just fit Linux and forget it. For those
who’d like to know a little of the history, Ruediger
Berlich charts some of the significant events and
motives that drove the development of the free OS

they use, and thus have a vested interest in promoting
their hardware. SGI and the MIPS processor line is an
example. There are few commercial Unix implementations
for Intel machines.

This is where Linux becomes a significant force for
business. Not only is Linux a Unix-compatible operating
system that challenges Microsoft Windows on its native
Intel platforms, but Linux also runs on all major hardware
platforms, from handheld devices with Motorola 68000
processors through Intel(-compatible) PCs all the way to
IBM S/390 mainframes. Because the same API (application
programming interface) is used on every platform, there is
complete source code compatibility from platform to 
platform. Learn it once and use it everywhere. Linux
achieves what SVID, POSIX and X/Open strived to achieve
for Unix, a common code base for every platform. For an
old Unix adept this must be like a dream come true.

Join the rebellion
You might think that after this longish introduction we
have finally come to the point where Linus Torvalds
unpacks his new and shiny 386SX and starts writing
Linux. You are wrong. Technically, Linux history doesn’t
begin with Linux, at least if you understand Linux to be
more than just the kernel.

Linux history begins with Richard Stallman in
September 1983. Stallman was a researcher at the
Massachussets Institute for Technology (MIT) in
Cambridge, Massachussets, when he made the initial
announcement of GNU (see box, Here is the GNUs), and
what became the Free Software Foundation. Stallman was
already known as the author of a text editor called Emacs.
Those with long memories of Unix will remember the holy
wars between users of the text editors vi and Emacs.

Writing the components of a free operating system
takes time. One of the most important parts of the original
GNU system, the operating system kernel, known as the
Hurd, only saw the light of day very recently (except as an
experimental system). However, Richard Stallman made
available a multitude of utilities, without which any kind
of operating system is useless. Most notably, apart from the
text editor Emacs, Stallman developed a compiler called
gcc (GNU C Compiler). As one of the major design targets
for this compiler was portability, you will today find versions
for any operating system under the sun. There are also
GNU compilers for many other programming languages
including C++, Pascal and Fortran. The GNU utilities were
essential to the development of Linux.

GNU, free software and open source
Arguably Stallman’s biggest achievement, however, is the
creation of the GNU General Public Licence (GPL). All
GNU software, by definition, is covered by this licence or
the less restrictive LGPL. In summary the GPL says that
whenever you make changes to a piece of software covered
by the GPL, these changes must also be made available
under the GPL. While you may sell software covered by the
GPL, you must make available the complete source code to

everybody who wishes to gain access. Furthermore, any
person using GPL’d software gains the same right to 
redistribute and modify this software. As the GPL is
designed to retain your freedom to do with the software
(almost) what you want, it is often called the ‘copyleft’.

Richard Stallman and the GPL have initiated a whole
new culture of software development, variously called the
free software or open source movement. Any person who
is willing and capable of providing changes to a piece of
GPL’d software can do so. And indeed, as the past 17 years
have shown, the GPL has led to a rapid evolutionary
improvement in the quality of GPL’d software.

It is important to note that Linux was not the first
software project to use the open source paradigm, although
it is arguably the most important such project to date.

Just a hobby...
At last, we get to the beginning. It’s 1991. Trying to gain
hands-on experience in operating system design, Linus
Torvalds, a student of computer science at the University of
Helsinki, Finland, started to work on a new operating 
system that would later be named Linux after its founder.
However, the initial releases were called FREAX, not Linux.
This name can still be found in the kernel/Makefile of ver-
sion 0.11, and other code. The initial development of
Linux was done on a relatively low-spec’d 386SX. Linus
Torvalds initial posting was to the newsgroup
comp.os.minix on 25 August 1991. (See Box, Linus tells the
world). At the time of this posting, version 0.01, developed
on a relatively low-spec’d 386sx, wasn’t actually released
and Linux, or FREAX, had very little functionality.

In another posting (26 August 1991) Linus makes a first
commitment to the GNU licence: “...Even then it probably
won’t be able to do much more than minix, and much less
in some respects. It will be free though (probably under
GNU-license or similar) ...”.

The rise of
the penguin
The number of lines
of code are shown for
the various kernel
versions. As you can
see, the lines of code
in stable kernel 
versions (2.0, 2.2)
increase much slower
than the lines of code
in the developer 
kernels (2.1, 2.3). The
latest kernel, version
2.4, has more than
three million lines of
code, compared to
8400 lines of code in
the very first version
0.01. Kernel 1.0 (with
170,000 lines of
code) was a big
achievement 



99LinuxUser/May-June 2000

ALL YOU NEED TO KNOW ABOUT...

The early history of Linux, Part 1

The fact that Linus made his code available over the
Internet is crucial for the further development of Linux.
Many people joined and helped out with feature requests
or, better, their own implementation of extensions or fea-
tures. It is worth noting that use of the Internet was wide-
spread in 1991, so contributions usually came from people
that were themselves relatively technical.

It took more than two years for Linux to reach version
1.0, on 16 April 1994. This is not to say that Linux wasn’t
usable before that time. You will find many who were at
university at that time studied and used Linux for all sorts
of tasks.

As of version 1.0 the development of the Linux kernel
was split. Even version numbers (such as 1.0, 1.2, ...)
denote stable kernels ready for use. Odd version numbers
(such as 1.1, 1.3, ...) denote developer kernels which are for
development purposes only. Once all desired features have
been incorporated into a developer series of kernels, the
final version undergoes a code freeze, eventually being
renamed as the first kernel of a stable series. Usually only
bug-fixes are allowed in the stable kernel series, although
occasionally important new features get ported back from
the developer series. 

From the earliest days, the development of Linux

depended on many other individuals who devoted their
time, skill and considerable effort to the project (see Box,
Some key contributors).

Over time, many new features have been integrated
into the kernel. The SMP (symmetric multiprocessing)
capability was introduced as of kernel 2.0, although it had
long been available as an experimental system. Loadable
modules were first introduced by Peter McDonald for an
0.99 kernel, although the actual implementation that is in
use today is different. As of kernel 1.2 (6.3.1995) Linux
availability was formally extended to Alpha, Sparc and
MIPS processors, thus overcoming the strong dependency
on x86 processors of the earlier versions of the kernel.
Today, version 2.4 is available on every major processor
platform, from the low-end Motorola 68000 to the IBM
S/390 mainframe.

The biggest change from an end user perspective, how-
ever, were the new drivers. While initially there was not
much more than a driver for a standard IDE drive, later ver-
sions introduced support for all kinds of hardware. Crucial
to this development was the wide support of Linux by vol-
untary developers all over the Internet and the willingness
of hardware manufacturers to make the specifications for
their hardware publicly available. Not all manufacturers
have been forthcoming. However, current Linux hardware
support need fear no comparison. Kernel 2.4 even adds
support for USB and firewire drivers. Nonetheless, contin-
ued support from hardware manufacturers remains crucial
to the future growth of Linux.

In the next issue, Ruediger concludes his two-part series with a look back
at the first Linux distributions, the standards debate, and the appearance
of applications. Ruediger Berlich is managing director of SuSE Linux UK

Counting from 0.01 to 1.0
Version Date Comments

0.01 09/1991 no (binary-)programs available, some device drivers and disk drivers

0.03 26/10/1991 considered usable, shell available, C compiler plus a few utilities

0.12 05/01/1992 the first version distributed under the GPL

0.96 04/1992 the first version capable of running the X Window System

0.99.14 12/1993 the 0.99 series had many sub-versions, as Linux geared up to version

1.0

1.0 16/04/1994 1.0 was released after more than two years of development

Read the announcement in full at www.gnu.org/gnu/initial-announcement.html

Here is the GNUs – RMS announces his free system project

Linus tells the world

Some key contributors
Werner Almesberger floppy drivers, LILO

Theodore Ts’o Ext2 filesystem, libraries, kernel memory allocator, many suggestions to
achieve POSIX compatibility

Donald Becker network drivers (later also Beowulf)

Olaf Kirch Linux Networking book, NFS code

Alan Cox networking, a lot of kernel work, early SMP. Alan Cox also maintains the 
2.2 kernel series and is one of the main kernel developers today

Of course, all of these people have done much more work than the examples given, and there are
countless more developers not mentioned in this short list who have made significant contribu-
tions.

25 Aug 91 20:57:08 GMT
Hello everybody out there using minix –

I’m doing a (free) operating system (just a hobby, won’t be big and profes-
sional like GNU) for 386(486) AT clones. This has been brewing since april, and
is starting to get ready. I’d like any feedback on things people like/dislike in
minix, as my OS resembles it somewhat (same physical layout of the file-system
(due to practical reasons) among other things).a

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work. This
implies that I’ll get something practical within a few months, and I’d like to
know what features most people would want. Any suggestions are welcome, but I won’t
promise I’ll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes – it’s free of any minix code, and it has a multi-threaded fs. It is NOT
portable (uses 386 task switching etc), and it probably never will support any-
thing other than AT-hard disks, as that’s all I have :-(.

Tue, 27-Sep-83 12:35:59 EST

Free Unix!
Starting this Thanksgiving I am going to write a complete Unix-compatible soft-
ware system called GNU (for GNU’s Not Unix), and give it away free(1) to everyone
who can use it. Contributions of time, money, programs and equipment are greatly
needed.

To begin with, GNU will be a kernel plus all the utilities needed to write and
run C programs: editor, shell, C compiler, linker, assembler, and a few other things.
After this we will add a text formatter, a YACC, an Empire game, a spreadsheet,
and hundreds of other things. We hope to supply, eventually, everything useful
that normally comes with a Unix system, and anything else useful, including on-
line and hardcopy documentation.

GNU will be able to run Unix programs, but will not be identical to Unix. We
will make all improvements that are convenient, based on our experience with other
operating systems.

Red Hat ad from last
issue - Warners to strip in


